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Abstract

Nonequilibrium processes break time-reversal symmetry and generate entropy.
Living systems are driven out-of-equilibrium at the microscopic level of molecular
motors that exploit chemical potential gradients to transduce free energy to me-
chanical work, while dissipating energy. The amount of energy dissipation, or the
entropy production rate (EPR), sets thermodynamic constraints on cellular pro-
cesses. Practically, calculating the total EPR in experimental systems is challenging
due to the limited spatiotemporal resolution and the lack of complete information
on every degree of freedom. Here, we propose a new inference approach for a tight
lower bound on the total EPR given partial information, based on an optimization
scheme that uses the observed transitions and waiting times statistics. We intro-
duce hierarchical bounds relying on the first- and second-order transitions, and the
moments of the observed waiting time distributions, and apply our approach to two
generic systems of a hidden network and a molecular motor, with lumped states.
Finally, we show that a lower bound on the total EPR can be obtained even when

assuming a simpler network topology of the full system.
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Introduction

1.1 Overview

Advances in experimental techniques over the last few decades have opened new
possibilities for studying systems at the single-molecule level [2—4]. In parallel, new
theoretical approaches of stochastic thermodynamics for studying the physics of
nonequilibrium, small fluctuating systems have emerged [5-7]. These include the
mathematical relations describing symmetry properties of the stochastic quantities
like work [8-10] heat [10, 11], and entropy production [12, 13], leading to funda-
mental limits on physical systems like heat engines [14-16] refrigerators [17], and

biological processes [18, 19].

Living systems operate far-from-equilibrium and constantly produce entropy. At
the molecular level, the hydrolysis of fuel molecules, such as Adenosine triphosphate
(ATP), powers nonequilibrium cellular processes, utilizing part of the liberated free
energy for physical work, while the rest is dissipated [6]. The dissipation, or en-
tropy production, is a signature of irreversible processes and can be used as a direct
measure of the deviation from thermal equilibrium [20-23]. Therefore, the entropy
production rate plays an important role in our understanding of the physics and
underlying mechanism, governing biological and chemical processes [14-16, 18, 19,

24].
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Various studies have focused on estimating the mean entropy production rate
using the thermodynamic uncertainty relations (TUR) using current fluctuations
[25-30], fluctuations of first passage time [31, 32], kinetic uncertainty relation in
terms of the activity [33], or unified thermodynamic and kinetic uncertainty re-
lations [34]. Other approaches utilize waiting-time distributions [35-37], machine
learning [38-41], and single trajectory data [42-44]. Additional studies calculate
higher moments of the full probability density function of the entropy production
[45], use irreversible currents in stochastic dynamics described by a set of Langevin

equations [46], or linear response theory [24].

Estimating the total EPR is only possible if we have knowledge regarding all of
the degrees of freedom that are out-of-equilibrium [47, 48]. However, due to practical
limitations on the spatiotemporal resolution, not all of them can be experimentally
accessible, and one can only obtain a lower bound on the total EPR for partially

observed or coarse-grained systems [49-55].

The passive partial entropy production rate, o, is an estimator for the EPR
calculated from the transitions between two observed states, which bounds the total
EPR [49, 56-58|. This estimator, however, fails to provide a non-zero bound in case
of vanishing current over the observed link, i.e., at stalling conditions [49]. Other
EPR estimators for partially observed systems based on inequality relations like the
TUR [25-27, 33, 34] also fail to provide a non-trivial bound on the total EPR in the

absence of net flux in the system.

The Kullback-Leibler Divergence (KLD) estimator, okrp, is based on the KLD,
or the relative entropy, between the time-forward and the time-revered path prob-
abilities [22, 47, 59-63]. For semi-Markov processes, this estimator is a sum of
two contributions. The first stems from transitions irreversibility or cycle affini-
ties, 0.4, whereas the second stems from broken time-reversal symmetry reflected
in irreversibility in waiting time distributions (WTD), owrp [64]. Using the KLD
estimator, one can obtain a non-trivial lower bound on the total EPR for second-
order semi-Markov processes even in the absence of the net current [36, 64-66].

Moreover, a lower bound on the total EPR can be obtained from the KLD between
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transition-based WTD [60, 65, 67].

Recently developed estimators solved an optimization problem to obtain a lower
bound on the entropy production. For a discrete-time model, Ehrich proposed to
search over the possible underlying systems that maintain the same observed statis-
tics using knowledge on the number of hidden states [68]. For continuous-time
models, Skinner and Dunkel minimized the EPR on a canonical form of the system
that preserved the first- and second-order transition statistics to yield a lower bound
on the total EPR, o9 [69]. The authors also formulated an optimization problem to

infer the EPR in a system with two observed states using the waiting time statistics

35).

In this thesis, we provide a tight bound on the total EPR by formulating an
optimization problem based on the statistics of both transitions and waiting times.
For a system with a known topology (i.e. the number of states and possible tran-
sitions), we calculate the analytical expressions of the statistics as functions of the
transition rates and the steady-state probabilities, which describe a possible under-
lying system and are used as variables in the optimization problem. These analytical
expressions are then used to constrain the optimization variables to match the ob-
served statistics. We show for a few continuous-time Markov chain systems that for
the waiting-time statistics using only the first moment of the WTD already provides
close-to-total EPR value. Our approach outperforms other estimators, such as oy,
OKLD, Oaff, and oo, in terms of the tightness of the lower bound. In the case of a
complex model, where the formulation of the optimization problem might not be
practical due to the number of constraints, or in case the full topology is not known,
we show numerically that assuming a simpler underlying topology can provide a

lower bound on the total EPR.
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1.2 Model

We assume a continuous time Markov chain over a finite and discrete set of
states i = {1,2,..., N}. A trajectory is described by a sequence of states and their
corresponding residence times before a transition to the next state occurs. Being a

Markovian process, the jump probabilities depend only on the current state.

The transition rates w;; from state ¢ to j determine the time evolution of the
probabilities for the system to be in each state, according to the master equation
Lp(t)" = p(t)"W, where T is the transpose operator, and W is the rate matrix

W, =40 7 (1.1)

—A j=1
p(t) is a column vector of the state probabilities at time ¢, with > . p;(t) = 1,
and the diagonal entries are calculated according to A; = ) i Wi for probability

conservation.

At the long-time limit, the system eventually reaches a steady state m, where

limy_,o0 p;(t) = m; such that 0 = 47 = x"W [70].

The waiting time at each state ¢ is an exponential random variable with mean

waiting time of 7; = \; .

The mass rates n;; (i.e. the rate to observe the transition ¢ — j) are defined as
follows:
T Wy 5 J#F
0 j=1
From the master equation, we can easily see that a "mass” conservation equation

is satisfied » . n;; = D ny (the rate to observe any transition to state ¢ must be

equal to the rate to observe any transition from 7). Thus the name "mass rates”.

The transition probabilities from state i to state j can be written in terms of the

mass rates:
wij ni]—
)‘i Zj’;éi nij/
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The steady-state total EPR can be calculated by multiplying the net currents

and the mass rate ratios (affinities), summing over all the links [6, 7]:

_ 1 TiWij
Otot = ;Wi 108
. TjWii

1,J

Nij
= an log <n—j> (1.4)
2Y)
Ni;
= Z(nm — ny;) log (n_j)

i<j

Where n;; —nj; is the net current and log ( S ) is the affinity, for the link 7 to j.
ijji

Given a long trajectory of a total duration T, the steady-state probability ;
is the fraction of time spent in state i, and the mass rate n;; is the number of

transitions ¢ — j divided by T'.

According to the definition of the mass rates in Eq. 1.2, at the steady state, mass

conservation is satisfied at each state:
J J

In many practical scenarios, some of the microstates cannot be distinguished,
and the transitions between them cannot be observed. In such a case, a set of states
{i1,49,...,in,} is observed as a single coarse-grained state I (Fig. 1.1(a)). The
observed trajectory, therefore, includes only coarse-grained states and the combined
residence time (Fig. 1.1(b)), and it is not necessarily a Markovian process [64]. Such
a decimation procedure of lumping several states can give rise to semi-Markovian
processes of any order depending on the topology of the network [69, 71-73]. In
this case, the observed statistics of two or more consecutive transitions may give us

additional information on the process.
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Time Time

Figure 1.1: Coarse graining. (a) The full Markovian system (left) and the
coarse-grained system (right). (b) An example for a full trajectory (left) containing
the actual states and the corresponding coarse-grained trajectory (right)

containing only the observed states.
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1.3 Entropy production rate and irreversibility

This section presents the relation between EPR and irreversibility.

1.3.1 Irreversibility

For fixed observation time T, we denote a trajectory vy = {(io, t0), - - -, (in,tn)},
which is a chronological sequence of states (ig, . .., iy} and waiting times {to, ..., tx},

and ) . t; = T. The time reversed trajectory is denoted by vp = {(in,tn), ..., (io, t0)}.

As mentioned in section 1.2, the waiting time distribution is an exponential
distribution with mean of 1/, together with the jump probabilities, p;;, we get the

joint probability for transition and waiting time:
wij (t) = wije*’\it (16)
Thus, the probability to observe the trajectory -y is:
N-1
P<7T> = eitN)\iN H [win,in+1€7tn)\in]7rio (17>
n=0

where the initial state ig is sampled from the steady-state probabilities w. Now we

construct a trajectory observable:

Rlyr] = log (ggﬁ) (1.8)

where P[vr] is the probability to observe the reversed trajectory ~r.

After plugging Eq. 1.7 into Eq. 1.8:

N-1
Rlvpl =1 o loo [ Linsint1
[yr] = log (W. ) +) og( >

iN Wiy y14in

=0 (1.9)
- 1 20 i 1 Y
on(5e) o ()
where ¢;; is the number of transitions ¢ — j in the trajectory ~:
N—-1
Gij = Z 0i,in 05 inin (1.10)

n=0
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The long-time average yields:

)T = Jim o <%

. ) Gij Wi
T—o00 —00 Z o (w_ﬂ)

lim (R[yr

=0+ an log (ZU)
@] Je
w;; T (1.11)
il -2
o)+ Stes ()

= anj log (
s (22)

2,
nZ]
= E an njl) log< )
n.ﬂ
1<j

Notice that by definition n;; = limy_, ¢;; /T. In addition, we used Z n;;log <7Tz) _
Ty
0:

Z n;j log <%) Z miw;j log(m;) Z miw;j log(m;)
i,j J
= Z miw;j log(m;) Z miw;jlog(m;) + [mi[W;; log(m;) — m; [W ;i log(m;)]
1#£] i#j

_Zm Jij log(m;) — Zﬂz’[W]ijl(}g(Wi)
5L bt X e

(1.12)
By the definition of the rate matrix V; : 3 _,[W];; = 0 and from the master equation
d
at the steady state V; : 0= % => . m[W],;.

Thus, we justified ), ; n;; log (W ) =0.
Ty

To quantify the time irreversibility we use the Kullback-Leibler divergence be-
tween the probability to observe the trajectory forward in time and the probability

to observe the reversed trajectory:

D[Plya]||Pr]] = /WT Plyr] log (P[’VT])

(1.13)
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To conclude, from Eq. 1.11 and Eq. 1.13:

Jim 7 PIPrll Pl = Yo — o (22 (1.14)

n4.
i<j It

1.3.2 Entropy production rate

We look at the ensemble-averaged entropy which depend on the state probabili-
ties of the system, p;.

S =—kgp Zpi log(p:) (1.15)
Now we take a derivative by time. Z
%Z_Bz{dt (pZHledt]:_BZdllogpl 4 ngsi
= —kp Cg;z log(pi) — kp (Z Pi) _ —kp Z krg%) (1.16)
= —kp dtl (i)

Using the Markovian master equation:

iy =m0 (117)

We get:
= - Bz_log pz kB ij ]llog pZ) (1.18)
By the definition of the rate matrix W:

Vi Y [Wlji=0 (1.19)

i
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Thus:
= _kB ij _]’L lOg p’L)
= _kB ij j’L lOg pz + kB Zp] (Z[W}ﬂ) lOg(pj)
i %
= _kB ij jz 10g pz + kB Zp] ]z 10g<pj)
i,
()
kB 2
- 2_PilWlij — pj[Wl;i) log { =
'L,] pj
kB Di [W] ij kB [W]ﬂ
(1 [W) W o BB, (W, — ) (W) log (Vs
2 = T pi[Wlji 2 Zz; T (Wi
= Ogot + Se
(1.20)
Where:
Otot = 73 Z” (pi[W]ij — p;[W];i) log (Z%) is the entropy production rate.
j ji
Se = 73 > (Pi[Wlij — pi[W];:) log <%) is the entropy flow.

Therefore, we got the expression for the steady-state entropy production rate (set-
ting kg = 1 and p; = m;):

_ 1 TiWij
Otot = E (miwg; — mjw;;) log | ——
T W4

i<J

= Z n;; — nji)log (n )
T

1<J

(1.21)

Which bring us to the relation between EPR to irreversibility. Eq. 1.14 from the

previous section together with Eq. 1.21 from this section, gives us:
" -
0ot = lim —=D[P[v7]||P[7]] (1.22)
T—oo T

Therefore, EPR can be used to quantify the irreversibility of a process.
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1.4 Passive partial production rate

The passive partial entropy production rate, o, is an estimator for the EPR
calculated from the transitions between two observed states, which bounds the total
EPR [49, 56-58]. Suppose we observe only two states i’ and j', which are Markovian,
and the transitions between them. Thus, we can calculate the transition mass
rates nyy and njy in order to calculate the entropy production inferred from the
transitions between them:

ni/j/

) (1.23)

Opp = (N — Mjrir) log(n »
71

We can easily see that oy, is a lower bound for the total entropy production:

T q
Oror = Y _(nyj — ) log(~=)
i<j 7
N4 T4
Njrie i<j fji
(3.3)# @ 5"
ni’j/
Z (ni/j/ — nj/i/) 10g( — ) = O'pp
’I’L]/,L/

This estimator, however, fails to provide a non-zero bound in case of vanishing
current over the observed link, i.e., at stalling conditions [49]. Other EPR estimators
for partially observed systems based on inequality relations like the TUR [25-27,
33, 34] also fail to provide a non-trivial bound on the total EPR in the absence of

net flux in the system.

1.5 KLD estimator

The Kullback-Leibler Divergence (KLD) estimator, okrp, is based on the KLD,
or the relative entropy, between the time-forward and the time-revered path prob-
abilities [22, 47, 59-63]. For semi-Markov processes, this estimator is a sum of
two contributions. The first stems from transitions irreversibility or cycle affini-
ties, gag, whereas the second stems from broken time-reversal symmetry reflected in

irreversibility in waiting time distributions (WTD), owrp [64].
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For this estimator, they consider statistics based on second-order transitions. We
take into account the former observed state in addition to the current one. We use
a new description where a state in our trajectory consists of the former state I and
the current one J. Thus, a state in our new trajectory is described as [/.J]. Then,
we calculate the KLD bwtween the forward and backward path probabilities based

on this description.

OKLD = Oaff + OWTD

1
=7 Z Prik log

1,J,K

(pE[U] — [JK]))
p

[KJ] — [J1)) (1.24)

+ 71, Z pro D Wy )|V (t)]
1JK
where p([/J] — [JK]) is the probability to observe the transition J — K given the
previous transition was I — J, p;si is the probability to observe the second-order
transition I — J — K, and D[p||q| is the KLD between the probability distributions

p and q.

Using the KLD estimator, one can obtain a non-trivial lower bound on the total
EPR for second-order semi-Markov processes even in the absence of observed net
current [36, 64-66, 74]. Moreover, a lower bound on the total EPR can be obtained
from the KLD between transition-based WTD [60, 65, 67].

1.6 Optimization based estimators

Recently developed estimators solved an optimization problem to obtain a lower

bound on the entropy production.

1.6.1 oy estimator

For a discrete-time model, Ehrich proposed to search over the possible underlying
systems that maintain the same observed statistics using knowledge on the number

of hidden states [68]. The optimization problem is formulated on a specific system
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of four states with two observed states and two states coarse-grained as one. A
similar formulation can be applied on similar systems as long as the number of the
observed states is equal to the number of hidden states and the matrices of jump

probabilities can be inverted.

1.6.2 o5 estimator

For continuous-time models, Skinner and Dunkel minimized the EPR on a canon-
ical form of the system that preserved the first- and second-order transition statistics
to yield a lower bound on the total EPR, o9 [69]. The canonical form can be reached
by applying a few steps which changes the underlying system and each step is shown
to not raise the EPR while keeping the first and second-order mass rate statistics.
Furthermore, they showed that for each 3 coarse-grained states {/, J, K}, the num-
ber of inner states of J in the canonical form, which are connected to I and K, is at
most four in order to get the minimum EPR. Since the canonical form has a simple
topology we can easily get the constraints for the optimization problem, which make

sure the observed statistics are conserved.

1.6.3 o estimator

Skinner and Dunkel also formulated an optimization problem to infer the EPR
in a system with two observed states using the waiting time statistics [35]. With a

simple re-scaling to the rates and steady-state probabilities of the underlying system,

2k
they show you can get an estimator which equals to a factor L multiplied
(ta) + (ts)
t
by the value of a function A which depends only on the ratio %, where t4
A

and tp represent the waiting times in each of the observed states. The function A

can be computed numerically, by solving an optimization problem, for each value of
Var t4

(ta)?




Method

Can we find a better estimator which outperforms the previous ones?
In order to achieve that, we introduce a novel method, which utilizes additional
information that was not considered in previous works. This information is the

underlying system topology.

2.1 Bounding the entropy production rate

Given a coarse-grained system with a model of the full underlying Markovian
network topology, we can formulate an optimization problem for obtaining a tight
bound on the total EPR. We consider a few observables: the coarse-grained steady-
state probabilities, 7wy, which is the probability of observing the system in the coarse-
grained state [; the first-order mass rates, ny;, which is the rate of observing the
transition I — .J; the second order mass rates, ny;x, which is the rate of observing
the transition I — J followed by the transition J — K; and the conditional waiting
time distributions 1y, (t), which is the distribution of waiting times in a coarse-
grained state J before a transition to a coarse-grained state K occurs, conditioned

on the previous transition being I — J.

We search over the space of all possible underlying systems with the same topol-

ogy as our hypothesized Markovian model that give rise to the same observed statis-

14
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tics, while minimizing the EPR. Trivially, the EPR of the coarse-grained system at
hand is bounded from below by the EPR of the underlying Markovian system with
the same observed statistics after coarse-graining, having the minimal value of en-

tropy production.

2.1.1 Analytical expressions of the observed statistics

The observed statistics of the coarse-grained system can be expressed analytically
in terms of the mass rates and steady-state probabilities of the model underlying sys-
tem. From probability and mass conservation, 7; = ) .., m;, and ny; = Zie[,jeJ Nij,
respectively. The mass conservation for the second-order transitions nj;x must in-
clude all the paths starting at state ¢ € I, passing through a state in J, where any
number of transitions might occur inside J, and jumping to state k € K. To account
for the transitions within J, we define the matrix P;; of the transition probabilities
between states in J, j,, jn € J:

[PJJ]mn - Paman 11 ?é ! (21)

0 m=n
Summing over the possible transitions from I, transitions within .J, and transitions
to K, we have (see Appendix A):
nijK = Z n [ — Py 'pk (2.2)
i€l keK
where I is the identity matrix of the size of P;;, and n;; and py; are column vectors
of the mass rates from state ¢ € I to any state j € J, and jump probabilities from

any state 7 € J to a state k € K, respectively:

nz:] = [nijla Mijoy " 7nijNJ] (23)
and:
p?;k: = [pj1k7pj2k7 e 7ijJk] (24)

The conditional waiting time distribution ;;x(t) can be calculated by the

Laplace and inverse-Laplace transforms (full derivations can be found in Appendix B).
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We start from the Laplace transform of ¢;;(t) = w;;e, the joint probability dis-

tribution of the transition ¢ — j and the waiting time in the Markovian state i:

- g w;;
Buls) = L0} = [ e ar = 0 2.5)
Note that for any function f(t), f(s — 0) = [ f(t)e ®dt|sso = [;7 f(t)dt is

the normalization of f(t). Here, ¢;;(t) is normalized to p;;, i.e., p;; = fo @Z)ij

(Eq. 1.3).

Now, we consider the simple case where the second-order transition through the
coarse-grained state J starts and ends in specific Markovian states i € I and k € K,
respectively. The Laplace transform of the distribution of waiting times in J before
a transition to k occurs, given the previous transition was ¢ — J is:

T
Dun(s) = o= [1= B (5)] " Pun(s) (2.6)
> jes Pij
where
P7(5) = Wi (8) Yiar(8), - Wy (8] (2.7)
and ¥ s(s) is a matrix of the Laplace transforms of every joint probability distri-
bution of waiting times and transitions within J:

By(s) = § V) A (2.8)

We denote &UK(S) =D ek &Uk(s). Then, the Laplace transform of the condi-
tional waiting time distribution is:

K 7@:}1{(8)

T 1;1‘]](<8 — 0)

ILIJK(S) =

il

(2.9)

Finally, we apply an inverse Laplace transform to obtain the conditional proba-
bility density:
Vi (t) = E_l{¢IJK(S)} (2.10)

We further impose mass conservation at each of the Markovian states according

to Eq. 1.5, to make sure the solution represents a valid Markovian system.
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2.1.2 Formalizing the optimization problem

Let S be the real underlying Markovian system and let R be a general underlying
system with the same topology as S, i.e., the same states and possible transitions
as §, but R can have arbitrary mass rates and steady-state probabilities. Given
the set of all systems R with the same steady-state probabilities 7% = 7¢, same
first-order mass rates n¥; = n$;, same second-order mass rates nf,; = n¢;,, and

the same conditional waiting time distributions ¥/ () = ¢, (t), as the system S,

the following inequality holds for the EPR of S and R, o(S) and o(R), respectively:

Tt (S) > m%n{atot(R)NLJ,K : W}z = ’/T}S,TL?J = n}SJ,

n?JK = n}SJKa (2.11)

¢EK(75) = ¢}SJK(t)} = U(();Ot)

(

oo
where O’Opt)

is the minimal EPR value of all the possible underlying systems R. The
inequality holds since the real system & belongs to the set of systems over which we
minimize. The only variables of the optimization problem are n;; and 7;, from which
one can fully describe any of the possible underlying Markovian systems R. All the
constraints, 77, nry, nryr, and ¥ryr(t), as well as the EPR objective function,
depend on these variables. Note that these variables are bounded by 0 < m; < 7

and 0 S Nij S nry.

In contrast to the constraints on the steady-state probabilities and the first-
and second-order mass rate values, the constraint on the waiting-time distributions
requires an equality of continuous functions 7,k (t), which one cannot fully recon-
struct from trajectory data of finite duration. Moreover, solving the optimization
problem using a constraint on a function with non-trivial dependency on the opti-
mization problem variables is extremely challenging. Thus, we modify the optimiza-

tion, and instead, use the moments of the waiting time distributions:

Uézi(s) = m%n{atot(R”vl,J,K R =77, 0k =nd,,
n?JK = anKa (2.12)
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where (t% ;) is the k-th moment of the conditional waiting time distribution ¢y (t).

Using an increasing number of moments, we can write the hierarchical bounds:

Voer : 00(S) 2 005 (8) 2 051(S) = -+ > oi(S) (2.13)

We can easily get the analytical expressions for the moments (t¥,,.) from the

Laplace transform (see Appendix B):

d*Prx(s)
k k IJK
(thrae) = (- (214
S
Now, for each moment, we have an expression that depends on the optimization
problem variables in a simpler way, which in turn, simplifies the calculations. After
calculating the values of the observables for the optimization problem, we solve it

using a global search non-linear optimization algorithm [75].



Results

3.1 Examples

We apply our proposed estimator to several model systems and compare its

performance to the previous bounds on the total EPR.

3.1.1 4-state system

We consider a fully-connected network of 4 states, with two Markovian observed
states {1,2} and two hidden states {3,4}, which are coarse-grained to state H
(Fig. 3.1(a)), resulting in second-order semi-Markov dynamics [64]. The observed
statistics of interest are the steady state probabilities 71, mo and 7y, the first-order
mass rates nig, nyg1, nog, and nyo, the second-order mass rates nqgo and noyq and
the k-th moment of the conditional waiting time distributions (t§5,), (t¥g9), (t5g)
and (t&,,). Notice we only used the second-order statistics through the coarse-
grained state H, since states 1 and 2 are Markovian. Furthermore, we do not use
nig1 and nogo since they depend on the other mass rates: nig; = nig — nige and
Nogs = Nog — Nog1. Lhe derivations of the analytical expressions of the second-
order mass rates and the moments of the conditional waiting time moments, for this

system, can be found in Appendix C.

We tune the transition rates over the observed link between states 1 and 2

19
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according to wiz(F) = wipe P and wo (F) = wy P, where 3 = T~ is the
inverse temperature (with kg = 1), and L is a characteristic length scale, to mimic
external forcing. We compare the different EPR estimators on the system for several

values for a driving force F' over the observed link (Fig. 3.1(b)).

The passive partial EPR [49]:
T W12
Opp = (7'('111)12 — 772w21) IOg ( )

W21
n
= (n12 — n21) log <—12)

no1

The KLD estimator is the sum of two contributions:

OKLD = Oaff + OWTD

1
=7 Z prik log

I.JK

+ 7% Z PrixD [rix (O Vksi(t)]

1,J,K

(p([IJ] - [JK]))
p([KJ] = [J1])

where p([/J] — [JK]) is the probability to observe the transition J — K given the
previous transition was I — J, p;yi is the probability to observe the second-order
transition I — J — K, and D[p||q| is the KLD between the probability distributions
p and ¢q. As was previously shown, the hierarchy between the EPR estimators is

OKLD Z Oaff Z Upp [49, 64:]

The o, estimator is also formulated as an optimization problem searching over
a canonical form of the system with the same observed statistics, however, it only
considers the first- and second-order mass rates [69]. Its place in the hierarchy
between the EPR estimators varies for different systems. While o5 can be greater
than oxpp in some cases [69], here, for the rate values we used, oo < oxrp. In
fact, although the values of oy and o, appear to be similar (Fig. 3.1(b)), actually
09 < o, for all of the values of F' used.

At the stalling force, there is no current in the visible link, and we get o, =
1)

oat = 09 = 0, which is the trivial bound. In contrast, oxrp and our estimator o,

(1)

opt Surpasses oxrp significantly and yields a

@ qid

opt

give a non-trivial bound. Moreover, o

tight bound. For this system, using higher moments in order to calculate o
1)

not make any improvement compared to o,
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While the example in this section is of a system with 3 observed states, 2 of
which are Markovian, our approach can be generalized to any system. For example,

see Appendix E for a system with 4 observed states, 3 of which are Markovian,

1)

ot estimator still outperforms oxrp and os.

where the 0(()
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Figure 3.1: 4-state system. (a) Illustration of the full 4-state system topology,
including the coarse-graining of states 3 and 4 to state H. (b) Total EPR oy
(1)

(solid black line), our bound o

(brown cross), KLD estimator okrp (dotted blue
line), affinity estimator o,q (dashed green line), two-step estimator oo (yellow
Asterisk), and the passive partial entropy production o, (dashed-dotted orange
line). The rates we used are wyp =3 s~ w13 =0 s, wyy =8 s, wy =2 571,

Wz =H0 571, Woy =02 57wy =051 wye =251 wyy =755 wy =151,

Wyo = 35 8_1, Wy3 = 0.7 8_1.
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3.1.2 Molecular motor

Here, we study a model of a molecular motor, illustrated in Fig. 3.2(a). The
motor can physically move in space (upward or downward), i <> i + 1, or change
internal states (passive or active), i <> 7. An external source of chemical work Apu
drives the upward spatial jumps from the active state, and a mechanical force F'
acts against it and drives the downward transitions. We assume that an external
observer cannot distinguish between the internal states of the motor, but rather can
only record its physical position. The observed statistics are thus of a second-order

Semi-Markov process [64].

Owing to the transnational symmetry in the model, we represent the molecule
motor as a cyclic network of three coarse-grained states where each of them rep-
resents the physical location, lumping the active and passive internal states. We
denote the steady-state probability of being in the passive and active states as m
and 7', respectively. Notice that the probability of being in each physical location
in the 3-state cyclic system is the same, and that 7 and 7’ are the same for all of

the physical locations, therefore, 7 + 7’ = 1/3.

We denote the upward and downward transitions from and to the passive state as
uy and dy, respectively, the upward and downward transitions from and to the active
state as uy and do, respectively, and the transitions between the active and passive
states at the same physical location as r (right) and [ (left), respectively. The upward

and downward coarse-grained transitions are labeled as U and D, respectively.

The observed statistics of interest are the first-order mass rates ny, np, the
second-order mass rates nyy, npp and the k-th moment of the conditional waiting
times (tF), {t& ), (thy) and (t% ). Note that we do not use nyp and npy, since
they depend on the other mass rates: nyp = ny —nyy and npy = np —npp. Owing
to the symmetry of the cycle representation of the coarse-grained system, in which
the steady-state probabilities are equally distributed, we only need the constraints on
the upward and downward transitions. The derivations of the analytical expressions

of the second-order mass rates and the moments of the conditional waiting time
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distributions, for this system, can be found in Appendix D.

The chemical affinity p, arising from ATP hydrolysis for example, only affects
the transitions us and dy, whereas the external force F' affects all of the spatial

transitions wuy, di, us and ds. The transition rates then obey local detailed balance:

war /w1 = AT and wgy /wye = PFL7M  where L is the length of a single spatial

jump [64].

We compare the different EPR estimators for the molecular motor system for
several values of u, and for each p value, we tune the external forcing parameter F
(Fig. 3.2(b)). Notice the passive partial EPR, o, is not applicable for this system

since all the original Markovian states are coarse-grained.

The hierarchy of the different EPR estimators for the molecular motor, for the

(1)

opt = OKLD = Oaff > 02. At the stalling force for each value

rate values we used, is o,

of u, where there is no visible current, we find 0,4 = 09 = 0, which is the trivial
1)

bound. In contrast, similar to the 4-state system, o, surpasses okrp significantly

and yields a tight bound.
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Figure 3.2: Molecular motor. (a) Illustration of the full molecular motor system
including the coarse-graining of the active (red boxed square) and passive (ellipse)
states. (b) Total EPR oy (solid black line), our bound 0'(()3 (brown cross), KLD
estimator oxrp (dotted blue line), the affinity estimator o, (dashed green line),

and the two-step estimator oy (yellow Asterisk). The rates we used are

Wy = W) = Wyp = Wgp = 1 571wy = wgp = 0.01 571,
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3.2 Importance of data accuracy

One of the hyperparameters defining the optimization problem is the constraint
tolerance, which indicates the acceptable numerical error of the solution. If € is
the absolute error of the trajectory statistics with respect to the true analytical
ones, then the constraint tolerance must be equal to or greater than e. Otherwise,
when the constraint tolerance is smaller than the absolute error of the statistics, the
optimization problem might not converge or give an overestimation in the worst-case

scenario.

In Fig. 3.3, we plot the absolute (and relative) error of a few statistics values
calculated from several trajectories as a function of the trajectory length N, for both
systems discussed in the previous sections. Moreover, using the analytical values of
the statistics for maximum accuracy, we plot the results of our estimator aéllj)t as a

function of the constraint tolerance.

As expected, longer trajectory data result in a more accurate estimation of the
observed statistics used for our optimization problem for both systems, as evident
from the values of nyy, niye and (t152) for the 4-state system (Fig. 3.3(a)), and from
the values of ny, nyy, and (tyy) for the molecular motor (Fig. 3.3(b)). For smaller
errors, we can use a smaller constraint tolerance. The error bars in Fig. 3.3(a)
and (b), which are the standard deviation of the values of the observables in dif-
ferent realizations of trajectories with the same size, can be used as a scale for the

appropriate constraint tolerance.

For both systems, smaller constraint tolerance leads to a better estimator as the
value of the lower bound on the EPR approaches the true analytical value (Fig. 3.3(c)

and (d)), demonstrating the importance of an accurate estimation of the observables.
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Figure 3.3: Importance of data accuracy. (a) The error of some statistics of the
4-state system for different values of the trajectory length N. The absolute and
relative errors are on the left and right axes, respectively. (b) The error of some
statistics of the molecular motor system for different values of the trajectory
length N. The absolute and relative errors are on the left and right axes,
respectively. (c) The error of a&))t results for the 4-state system for different
constraint tolerance values, using the analytical statistics values. (d) The error of

(()llo)t results for the molecular motor system for different constraint tolerance

o
values, using the analytical statistics values. Error bars stand for the standard

deviation of 10 different realizations.



3. RESULTS 28

3.3 Optimizing a simple model

Although our approach can be generalized to any number of hidden states, the
analytical expressions for the observables become complicated, and the number of
variables increases for a more complex coarse-grained topology. In turn, solving
the optimization problem would require longer computation times. In order to test
the performance of our estimator, we solved the optimization problem for a larger
number of hidden states in a fully-connected network of 4, 5, and 6 states with only
2 Markovian observed states, assuming only 2 states are coarse-grained (Fig. 3.4(a)).
Similarly, we tested the performance of our estimator for the case of the molecular
motor with 2, 3, and 4 internal states at each physical position, assuming there are
only 2. While generally, the estimator gives a more accurate result for the case of
the 2 hidden state, which matches the assumption, it still provides a lower bound on
the total EPR with comparable accuracy for a larger number of hidden states in the
two systems (Fig. 3.4(b) and (c)). Moreover, our a(();l estimator can still outperform
other estimators, okgrp and 05, as demonstrated for the case of a 5-state system with

2 Markovian observed states and one coarse-grained state of three internal states in

Appendix F.
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Figure 3.4: Optimizing using a simple model. (a) Ilustration of solving the
optimization problem for a simple model with 2 hidden states (right), whereas the
real system has more hidden states (left). (b) The results of aéll,)t assuming the
simple 4-state model (2 hidden states), when the real system has 2 (red cross), 3
(green triangle) or 4 (blue circle) hidden states. (c¢) The results of J(()L)t assuming
the simple molecular motor model (2 hidden states), when the real system has 2
(red cross), 3 (green triangles) or 4 (blue circle) hidden states. For both systems,
the results are presented for random generated transition rates (for each case) with
statistics calculated from trajectories of length N = 10® using a constraint

tolerance of 107°.



Conclusions

We present a new estimator for the entropy production rate, which gives a tight
bound by formulating an optimization problem using both transitions and waiting
times statistics. Such data is readily available in different experimental settings, for
example, tracking a bead attached to a rotating bacterial flagellum [69, 76], or corti-
cal granules embedded in the actomyosin cortex of an oocyte [77]. Our estimator can
be applied to any system with a known topology, and it significantly surpasses pre-
vious estimators, as demonstrated for the two studied systems, the fully-connected
hidden network, and the molecular motor. The variables for the optimization prob-
lem can be inferred from the observed statistics, where longer trajectories result in
more accurate estimation and enable a smaller constraint tolerance value. Finally,
for both systems, our approach can provide a lower bound on the total EPR for more
complex systems, assuming a simpler underlying topology of the hidden states. Al-
though we numerically showed that searching over all the systems with a simpler
topology of the hidden part and the same observed statistics as the true system
gave a lower bound on the total EPR for the two systems we studied, it remains an
open problem to show this approach is universal. It would be interesting for future
work to determine whether removing states from the hidden sub-network can only

decrease the entropy production, given the observed statistics are conserved.

In summary, our approach is based on an optimization problem formulated using

the observed statistics of a partially accessible system, utilizing information on the

30
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underlying topology, in order to provide a tight lower bound on the total EPR.
The estimator can be used as a benchmark for comparing the performance of other

estimators that rely on coarse-grained or partial information about the system.
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Appendix A

Second-order mass rates

In order to find the second-order mass rates for two consecutive transitions be-
tween coarse-grained states, nysx, we need to take into account every possible orig-
inal state ¢ € I, every possible path within the coarse-grained state J, and every
possible transition from a state in J to every possible final state k € K. Let us start
by considering a specific initial Markovian state ¢ € I and a specific final Markovian
state k € K and calculate the mass rate n;:

oo
Nijk = E § NijoPjoji Pz = " Pin—1inPink
N=0jo,...inEJ

oo
E § N
- n’ij’ [PJJ} 3’3" pj”k‘
J

N=0j j"¢€

= > ny (i [P}}]j/jﬁ) - (A1)

Jjhgred N=0

=n}, [[— Py " ps
The two summations are for all the possible lengths N of trajectories within .J,
and all the optional paths with the given length {jo, j1, - ,Jn} in J. From mass
conservation, we can now obtain the expression for n; ;i by summing over all the
optional original ¢ € I and final k € K states:

nrixk = Z Z N gk (A-Q)

i€l keK
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Conditional waiting time moments

The waiting time at each Markovian state ¢ is an exponentially distributed ran-

dom variable 1;(t) with mean waiting time 7; = A\, *:

ei(t) = die ™ (B.1)

For the calculations, we used the joint distribution of the waiting time and the
transition 7 — 7:
wij (t) = U)Z'jei)\it (B2)
Notice that t;;(t) is not normalized to 1 as [;~ 1;(¢)dt = p;;.
The probability to observe a trajectory vy : i9 — 41 — -+ — ix with a total
duration of T is:
p(%\/, T) =

= /\r—1 wioh (tO)wiliQ (tl) U wiN—liN (thl) (BS)

Z t;=T
=0

dtodty - - dty_q

Since this is a convolution, we can perform a Laplace transform to get a simpler
formula of multiplications of Laplace transforms of Markovian joint distributions of

waiting times and transitions:
]5(’7}\7, S) = ,lvz)ioil (S)%Eillé(s) T ,%ZiNfliN (S) (B4)

34
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@Z,-j(s):/ wij<t)€_5tdt:/ wjeMte
0 0

where

(A e~ (PN
= ’LUij/O e Pt = wy; {_T/\z} (B.5)
_ Wi
- S + /\z

In order to calculate the moments of the conditional waiting time distribution
Y1y (t) for the coarse-grained state J conditioned on an initial state in / and a final
state in K, our strategy is to calculate its Laplace transform 151 Jk(s). We start
by calculating ;E@ Jk(s) which is the Laplace transform of the waiting distribution in
coarse-grained state J, before jumping to a specific Markovian state k € K, given
it came from a specific Markovian state ¢ € I. Since we want the waiting time in J,
we sum over all of the paths with any length N inside J with a final transition to
ke K, jo— 71— - — jnv — k, weighed by the probability to jump from ¢ € I to
the first state jo € J:

1/;iJk( )
< Dijo ~
Z Z pljo = j1 =+ = jn — k)
=0 jo,-- ]NEJJEJ

= Z Z pUO w]o]l( ) ' 'i}jz\f—le(s),’ijNk(S)

N=0 jo,.. JNEJJEJ

" T B B,

N=0j'j"€] ;

= Z prpw Z [‘iIJJ(S)NL,’jH Izj”k(5>

J’,J”EJ N=0

Z prpw [H N @JJ(S)] 33" Q;j”k(s)

Jhjed

JjeJ

— ZI;Z]‘;] []I — @JJ(S)}l Pi(s)

jed

where \iIJJ(S) is a matrix of size N; x Ny, and N is the number of Markovian states
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inside J:

ERCIER (B.7)

J1,J2 0 1=
As mentioned in the main text we denote ;5 (s) = Y okek Yisn(s). Notice that
Uik (s) is not normalized to 1 and it needs to be divided by vk (s — 0), which is

exactly the probability to jump from J to K, given the transition to J was from .

Normalized o inJK<S)
Virk (s) = —QZUK(S ~0) (B.8)

This results from the fact that we used v;;(¢), which is normalized to p;;.

In order to get ¢y x(s), we sum hNgmalized(s) over all of the Markovian states
i € I, weighed by the corresponding probability m; /7; of being in state i, given the

system is in the coarse-grained state I:
7. Ti 7 Normalize
VriK(s) = Z W—I%}\}K e (s) (B.9)
el

For a general probability density function f(¢) : [0,00] — [0,1] the Laplace

transform is:

i) = [ —std B.10
for= [ rnear (B.10)
and its k-th derivative by s is:
dk r 00
diis> = (—1)’“/0 thf(t)e st (B.11)

Taking the limit s — 0:

k~S 00
L o= 1 [ sy

(B.12)
— (CDH)
we find the k-th moment of the probability density function f(¢):
d"f(s)
ky _ k
(") = (1) Fb—m (B.13)

Therefore, the k-th moment (t5;,) of the conditional waiting time distribution

w[JK<t) iSZ

) = (- (B.14)



Appendix C

Analytical expressions for the

4-state system

The variables to consider for this system are the mass rates n;; and the steady-
state probabilities m; for i,j € {1,2,3,4}, meaning a total of 16 variables. Note
that 7y, m9, n1o and nop are fully observed. Therefore, we are left with 12 variables.
With the following linear constraints, we can immediately reduce the problem to 6

variables.

C.1 Linear constraints

We impose probability conservation, mass rate conservation in the hidden Marko-
vian states, and mass rate conservation between an observed Markovian state and

the hidden coarse-grained state.

C.1.1 Probabilities

From the conservation of the steady-state probability of the Markovian states

within the coarse-grained hidden state:

TH :7T3+7T4 (C].)
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C.1.2 Mass conservation at any Markovian state

We write the mass conservation for one of the hidden states (3 or 4), which for

this system, is enough to guarantee the mass conservation for the other hidden state:

n13 + Moz + N3 = N3y + Nizg + Nigy (C.2)

C.1.3 First-order mass rates

Here, we require the mass rate conservation of transitions in and out of the

hidden state, providing 4 constraint equations:

Vie{1,2} : Mim = N3 + Niy

(C.3)

Vief1,2) : i = N3i + Ny

C.2 Non-linear constraints

The second-order mass rates and the conditional waiting times moments can be
expressed only as a non-linear function of the optimization problem variables. Here,

we show the full derivations of these relations.

C.2.1 Second-order mass rates

For this system, as mentioned in the text, we are interested in nigo and nogy,
where the first and the last states are the observed Markovian states. From equation

Eq. A.1:

NifHj = ”;'FH - PHHT1 PHj (C4)
Where
0 p3s
Py = (C.5)
paz 0O
and
_ 1 1 pau
- Pyy] ™ = (C.6)

1 — p3apas pag 1



APPENDIX C. ANALYTICAL EXPRESSIONS FOR THE 4-STATE SYSTEM39

Plugging into Eq. C.4, we have:

nirj =iy (I — Pyul™ paj

[ ] 1 1 pa P3;
= |3 Mg
1 — p3apas paz 1 Daj
(C.7)
1 D3j + D34D4j
T 1 D [7113 ni4]
P3apa3 Daj + PazP3;
Ni3(P3; + P3apaj) + nia(paj + pasps;)

1 — p3apas

Remember we can express p;; in terms of the mass rates (Eq. 1.3).

C.2.2 Conditional waiting time moments

We calculate the conditional waiting times moments (tjy;) for 7,5 € {1,2}, in

terms of the problem variables. Based on Eq. B.14, we need to calculate ~fvfj‘j7'm“”zed(s).

From Eq. B.6:

o) =~ (1= (o] b ©8)

he{3,4}

Now, we can calculate 1y, (s) from Eq. 2.7 and Eq. B.5:

OI s
~ 37\ S
bujls) = |7 = oM (C.9)
w4j (5> S + )\4
Given that (Eq. B.7 and Eq. B.5):
_ 0 b
Bunls) = | V34(5)
_¢43(3) 0
B W34 (C].O)
— S+ )\3
W43
LS+ )\4 0
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We can plug into Eq. C.8:
ity (s) =

- L [T Baus)] )

he{3,4}
1

pi3+Dia

[]%3 pm]

. 1 W34

(1 B W34W43 ) s+ A3
(s 4+ A3)(s + \g) _Was 1

8+)\4

~ ws;

S+ )\3
Wyj

_S+)\4 (C'll)

_ 1 (1 . W34W43 )_1
Pi3 + Dia (s+ A3)(s+ \a)

W3 W34 Wyj
s+ /\3 s+ )\3 s+ A\
Di3  Pia Wy; Wz Wa;

S+/\4 S+)\4S+)\3

_ (1 _ W34W43 )_1
(s 4+ A3)(s + \g)
[ Di3 ( Wsj i W34 Wyj >
Pis+DPia \S+A3  S+A3s+ M\
4 Dia ( W4y X W43 W3 )]
Dis+Pia \S+ Ay S+ S+ A3z

Since the states ¢ and j are Markovian, we just need to normalize this expression

in order to get the desired result:

biri(s — 0) =
_ ([ WaaWag -
A3y
Dis3 W3j W34 Wy
_ Pis (Wsy o, W3 Wy
|:pi3 + Dis ( Az Az N ) (C.12)

Dia Wy | W43 W3j ) }
+ — + —
Di3 + Dia ( A4 A A3

_ Dis (p3j + P3apaj) + Pia (Paj + Pasps;)
(pis + pia) (1 — p3apas)

Therefore:

Normalized _ J}iHj (S>
¢iHj (s) = —T;iHj(S = 0) (C.13)



APPENDIX C. ANALYTICAL EXPRESSIONS FOR THE 4-STATE SYSTEM41

Finally, we get the moments from Eq. B.14.

In order to get the expressions of the derivatives, we used the package Sympy in

Python.



Appendix D

Analytical expressions for the

molecular motor system

The variables to consider for the molecular motor system are the mass rates n,1,
N2, Na1, Na2, Ny, N, and the steady-state probabilities 7 and 7', meaning a total of
8 variables. With the following linear constraints, we can immediately reduce the

problem to 4 variables.

D.1 Linear constraints

As in the 4-state system, we impose probability conservation, mass rate conserva-
tion in the Markovian states, and mass rate conservation for the observed transitions

U and D.

D.1.1 Probabilities

From the conservation of the steady-state probability of the Markovian states

within the coarse-grained states:

T+ = (D.1)

42
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D.1.2 Mass conservation at any Markovian state

We write the mass conservation for one of the hidden states (active or passive),
which for this system, is enough to guarantee the mass conservation for the other
hidden state:

Ny 4 Nz = Ny + N (D.2)

D.1.3 First-order mass rates

Here, we require the mass rate conservation of transitions in and out of the

coarse-grained state, providing 2 constraint equations:

ny = Nyl + N2

np = Ng1 + Ng2

D.2 Non-linear constraints

Since we have 2 hidden states as in the 4-state system, the results from Ap-

pendix C can be used here.

D.2.1 Second-order mass rates

We use the results for the 4-state system in Eq. C.7, together with Eq. A.2. For
nyu, we need to sum over all the mass that goes up from the passive or active state,

and then up again only to the passive state:

N1 (Pu1 + PiDu2) L T (Pu1 + PiPu2)

Ny =
1 — Dipr 1 — DiPr (D 4)
_ (M1 + 12) (Pur + Pipuz)
1- DiPr

For npp, we need to sum over all the mass that goes down only from the passive
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state, and then down again to the passive or active state:

_ Naipar + NgoPrPa1 " Nq1Pd2 + Na2PrPd2

Npp
L — pipy I — pipr (D.5)
_ (na1 + nazpr ) (Par + Pa2) )
1— PiPr

D.2.2 Conditional waiting time moments

We account for all of the transitions through a coarse-grained state i, and specify
in the following calculations the Markovian state before jumping to ¢, and the follow-
ing Markovian state, after state ¢, where ¢’ (i) denoted an active (passive) state. For

example, (i—1) — (i41) represent two consecutive transitions, (i—1) — i — (i+1).

Note that a transition upward is only to a passive state, so the previous state
being passive or active) in the first transition does not affect the waiting time.
g g

Furthermore, a transition downward is only from a passive state.

From Eq. B.9:

T s (s)
T+ 1/;(2‘—1)—>(i+1)(8 —0)
™ Puysaen(s)
T+ 7 P 1ysarn (s = 0)

I e ©)
@Z(i—l)—>(i+1)(3 —0)

@ZUU(S) =

(D.6a)

and similarly:

Yun(s) =
s (&(i—l)—%i—l) + &(i—l)e(i—l)’) (s)
™t (%—1)%—1) + %/3@_1)%@_1)') (s = 0)
T (‘E(z‘—l)’—m—l) + Qz(i—1)’—>(i_1)’> (s) (D.6b)
T+ <1/~}(i—1)/—>(i—1) + &(i—l)'—%i—l)') (s —0)
@(HH(FD + 1/7@_1)%(1-_1)') (s)
(%—1)%—1) + iﬁ(iflwz;ly) (s —=0)
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Moreover:

= _ 772}(2'+1)H(i+1)(3) D6
vouts) Y1) sn (s = 0) (Dc)

and:

Fon(s) = <~<@E(i+1)ﬁ(il) + 12(1-+1)_>(i_1)’> (s)

- (D.6d)
Y(i+1)—(i-1) T ¢(¢+1)—>(¢—1)’> (s = 0)

Now we calculate all the terms in the numerators, using Eq. C.11 from the 4-state

system results:

1
~ WiWy
Y (8) = <1 TGN+ X))

(D.7a)
Wy1 + wy Wy2
<s +A s+As+ X)

1/:(1‘—1)—>(i—1) + @/N)(i_1)_>(i_1)’> (s) =
| W W, 1w L _Wa
(s+N(s+X) S+HA s+ (D.7b)

<1 B ww, >1 W41 + Wz
(s+A)(s+X\) s+ A

/N

¢(i+1)—>(i+1)(8) =
_ <1 — Wt )1
(s+M)(s+N)
[ Pd1 Wyl X Pa2 Wy Wy }
Pit +Pi2S+ A D+ Pazs+ AN s+ A (D.7c¢)

- (1 - (s+;U)lZ:+ X>>_1

1 Wy 1 |:p + pd2wr:|
Pas+pas+r | T s N
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(1/1(¢+1)—>(z'—1) + w(i+1)—>(i—1)/) (5) =

- (1 - (s+;u)l(?+ A’))l

[ Pa1 Wy Paz W,  Wq
+ ;
Pal +Pi2S+ A Dai +Pa2s+ AN s+ A
Pd1 W2 Pa2 Wy Wgo

; ; ]

Pdl +Da2 S+ A Pa1 +FPpa2s+ N s+ A

-1 (D.7d)

— 1— Wiwy

< (s+)\)(s—|—/\’)>
{ Pd1 Wa1 + Wao Dd2 Wy Wqy + wd2}
Pa1 +Da2 s+ A pa1 +pa2 s+ AN s+ A

- (1 - (s+:}>l(u;r+ X)>_1

1 W1 + Wa2 Da2 Wy
Da1 +DPa2 S+ A AN

All of the denominators from Eq. D.6 can be calculated by setting s — 0 in

Eq. D.7. Finally, we get the moments from equation Eq. B.14.

In order to get the expressions of the derivatives, we used the package Sympy in

Python.



Appendix E

Larger systems

We apply our method to a system with 5 states, 3 of which are Markovian, and
the other 2 are coarse-grained to a single state H (Fig. E.1(a)), for different values
of an external force F' used to tune the transition rates over the observed link 1 — 2

eBFL,

according to wio(F) = wipe P and wqy (F) = wy Comparing the results

of our method to other bounds (Fig. E.1(b)), 0(()3 outperforms okrp and o9, and

trivially o.g.
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Figure E.1: 5-state system with four observed states. (a) Illustration of the full
system topology, including the coarse-graining of states 4 and 5 to state H. (b)
Total EPR oy (black line), our bound oM (red cross), KLD estimator okpp (blue

opt

downward-pointing triangle), affinity estimator o,g (green upward-pointing

triangle) and two-step estimator oy (yellow Asterisk). The rates used are

1

1 1

wie =115 w3 =051 wy =715 wis =815 wy =31 5% wyy =051,
Woq = 12 S_l, Wo1 = 96 S_l, W31 — 0 8_1, W39 = 0 S_l, W34 — 92 8_1, W35 — 12 S_l,
wy1 = 69 871, Wy = 15 871, wys = 14 871, wys = 91 871, ws1 = 100 871,

Wse = T1 571 wsg =29 571, wsy = 30 s7L.



Appendix F

Comparing estimators when

optimizing for a simple model

We apply our method to a system with 5 states, 2 of which are Markovian, and
the other 3 are coarse-grained to a single state H. In order to solve for a case
where one does not have information about the underlying topology, we assume the
simplest topology, with only 2 internal states (Fig. F.1a), and write the optimization
problem accordingly. Using our approach, not only do we get a lower bound on the

(1)

opt Outperforms the other estimators.

total EPR, but also our estimator o,

49
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Figure F.1: Comparison to other bounds when assuming a simple topology. (a)
[ustration of the full 5-state system topology, including the coarse-graining of
states 3, 4, and 5 to state H (left) and the full-system topology we assume (right).
(b) Total EPR oy (solid black line), our bound ac(,;)t (red cross), KLD estimator
oxrLp (green upward-pointing triangle) and two-step estimator o (blue circle). The
results are presented for randomly generated transition rates with statistics
calculated from trajectories of length N = 108. Values of the estimators with the
same oy, correspond to the same system, showing that ac(,zll))t outperforms both

OKLD and 09.
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