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Abstract

Nonequilibrium processes break time-reversal symmetry and generate entropy.

Living systems are driven out-of-equilibrium at the microscopic level of molecular

motors that exploit chemical potential gradients to transduce free energy to me-

chanical work, while dissipating energy. The amount of energy dissipation, or the

entropy production rate (EPR), sets thermodynamic constraints on cellular pro-

cesses. Practically, calculating the total EPR in experimental systems is challenging

due to the limited spatiotemporal resolution and the lack of complete information

on every degree of freedom. Here, we propose a new inference approach for a tight

lower bound on the total EPR given partial information, based on an optimization

scheme that uses the observed transitions and waiting times statistics. We intro-

duce hierarchical bounds relying on the first- and second-order transitions, and the

moments of the observed waiting time distributions, and apply our approach to two

generic systems of a hidden network and a molecular motor, with lumped states.

Finally, we show that a lower bound on the total EPR can be obtained even when

assuming a simpler network topology of the full system.
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1

Introduction

1.1 Overview

Advances in experimental techniques over the last few decades have opened new

possibilities for studying systems at the single-molecule level [2–4]. In parallel, new

theoretical approaches of stochastic thermodynamics for studying the physics of

nonequilibrium, small fluctuating systems have emerged [5–7]. These include the

mathematical relations describing symmetry properties of the stochastic quantities

like work [8–10] heat [10, 11], and entropy production [12, 13], leading to funda-

mental limits on physical systems like heat engines [14–16] refrigerators [17], and

biological processes [18, 19].

Living systems operate far-from-equilibrium and constantly produce entropy. At

the molecular level, the hydrolysis of fuel molecules, such as Adenosine triphosphate

(ATP), powers nonequilibrium cellular processes, utilizing part of the liberated free

energy for physical work, while the rest is dissipated [6]. The dissipation, or en-

tropy production, is a signature of irreversible processes and can be used as a direct

measure of the deviation from thermal equilibrium [20–23]. Therefore, the entropy

production rate plays an important role in our understanding of the physics and

underlying mechanism, governing biological and chemical processes [14–16, 18, 19,

24].
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1. INTRODUCTION 2

Various studies have focused on estimating the mean entropy production rate

using the thermodynamic uncertainty relations (TUR) using current fluctuations

[25–30], fluctuations of first passage time [31, 32], kinetic uncertainty relation in

terms of the activity [33], or unified thermodynamic and kinetic uncertainty re-

lations [34]. Other approaches utilize waiting-time distributions [35–37], machine

learning [38–41], and single trajectory data [42–44]. Additional studies calculate

higher moments of the full probability density function of the entropy production

[45], use irreversible currents in stochastic dynamics described by a set of Langevin

equations [46], or linear response theory [24].

Estimating the total EPR is only possible if we have knowledge regarding all of

the degrees of freedom that are out-of-equilibrium [47, 48]. However, due to practical

limitations on the spatiotemporal resolution, not all of them can be experimentally

accessible, and one can only obtain a lower bound on the total EPR for partially

observed or coarse-grained systems [49–55].

The passive partial entropy production rate, σpp, is an estimator for the EPR

calculated from the transitions between two observed states, which bounds the total

EPR [49, 56–58]. This estimator, however, fails to provide a non-zero bound in case

of vanishing current over the observed link, i.e., at stalling conditions [49]. Other

EPR estimators for partially observed systems based on inequality relations like the

TUR [25–27, 33, 34] also fail to provide a non-trivial bound on the total EPR in the

absence of net flux in the system.

The Kullback-Leibler Divergence (KLD) estimator, σKLD, is based on the KLD,

or the relative entropy, between the time-forward and the time-revered path prob-

abilities [22, 47, 59–63]. For semi-Markov processes, this estimator is a sum of

two contributions. The first stems from transitions irreversibility or cycle affini-

ties, σaff, whereas the second stems from broken time-reversal symmetry reflected

in irreversibility in waiting time distributions (WTD), σWTD [64]. Using the KLD

estimator, one can obtain a non-trivial lower bound on the total EPR for second-

order semi-Markov processes even in the absence of the net current [36, 64–66].

Moreover, a lower bound on the total EPR can be obtained from the KLD between



1. INTRODUCTION 3

transition-based WTD [60, 65, 67].

Recently developed estimators solved an optimization problem to obtain a lower

bound on the entropy production. For a discrete-time model, Ehrich proposed to

search over the possible underlying systems that maintain the same observed statis-

tics using knowledge on the number of hidden states [68]. For continuous-time

models, Skinner and Dunkel minimized the EPR on a canonical form of the system

that preserved the first- and second-order transition statistics to yield a lower bound

on the total EPR, σ2 [69]. The authors also formulated an optimization problem to

infer the EPR in a system with two observed states using the waiting time statistics

[35].

In this thesis, we provide a tight bound on the total EPR by formulating an

optimization problem based on the statistics of both transitions and waiting times.

For a system with a known topology (i.e. the number of states and possible tran-

sitions), we calculate the analytical expressions of the statistics as functions of the

transition rates and the steady-state probabilities, which describe a possible under-

lying system and are used as variables in the optimization problem. These analytical

expressions are then used to constrain the optimization variables to match the ob-

served statistics. We show for a few continuous-time Markov chain systems that for

the waiting-time statistics using only the first moment of the WTD already provides

close-to-total EPR value. Our approach outperforms other estimators, such as σpp,

σKLD, σaff, and σ2, in terms of the tightness of the lower bound. In the case of a

complex model, where the formulation of the optimization problem might not be

practical due to the number of constraints, or in case the full topology is not known,

we show numerically that assuming a simpler underlying topology can provide a

lower bound on the total EPR.
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1.2 Model

We assume a continuous time Markov chain over a finite and discrete set of

states i = {1, 2, . . . , N}. A trajectory is described by a sequence of states and their

corresponding residence times before a transition to the next state occurs. Being a

Markovian process, the jump probabilities depend only on the current state.

The transition rates wij from state i to j determine the time evolution of the

probabilities for the system to be in each state, according to the master equation

d
dt
p(t)T = p(t)TW , where T is the transpose operator, and W is the rate matrix

[W ]ij =

wij j ̸= i

−λi j = i

(1.1)

p(t) is a column vector of the state probabilities at time t, with
∑

i pi(t) = 1,

and the diagonal entries are calculated according to λi =
∑

j ̸=iwij for probability

conservation.

At the long-time limit, the system eventually reaches a steady state π, where

limt→∞ pi(t) = πi such that 0 = d
dt
πT = πTW [70].

The waiting time at each state i is an exponential random variable with mean

waiting time of τi = λ−1
i .

The mass rates nij (i.e. the rate to observe the transition i → j) are defined as

follows:

nij =

πiwij j ̸= i

0 j = i

(1.2)

From the master equation, we can easily see that a ”mass” conservation equation

is satisfied
∑

j nij =
∑

j nji (the rate to observe any transition to state i must be

equal to the rate to observe any transition from i). Thus the name ”mass rates”.

The transition probabilities from state i to state j can be written in terms of the

mass rates:

pij =
wij

λi
=

nij∑
j′ ̸=i nij′

(1.3)
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The steady-state total EPR can be calculated by multiplying the net currents

and the mass rate ratios (affinities), summing over all the links [6, 7]:

σtot =
∑
i,j

πiwij log

(
πiwij

πjwji

)
=
∑
i,j

nij log

(
nij

nji

)
=
∑
i<j

(nij − nji) log

(
nij

nji

) (1.4)

Where nij −nji is the net current and log

(
πiwij

πjwji

)
is the affinity, for the link i to j.

Given a long trajectory of a total duration T , the steady-state probability πi

is the fraction of time spent in state i, and the mass rate nij is the number of

transitions i→ j divided by T .

According to the definition of the mass rates in Eq. 1.2, at the steady state, mass

conservation is satisfied at each state:

∀i :
∑
j

nij =
∑
j

nji (1.5)

In many practical scenarios, some of the microstates cannot be distinguished,

and the transitions between them cannot be observed. In such a case, a set of states

{i1, i2, . . . , iNI
} is observed as a single coarse-grained state I (Fig. 1.1(a)). The

observed trajectory, therefore, includes only coarse-grained states and the combined

residence time (Fig. 1.1(b)), and it is not necessarily a Markovian process [64]. Such

a decimation procedure of lumping several states can give rise to semi-Markovian

processes of any order depending on the topology of the network [69, 71–73]. In

this case, the observed statistics of two or more consecutive transitions may give us

additional information on the process.
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(a)

(b)

𝑖1
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𝐾 → 𝐼

Figure 1.1: Coarse graining. (a) The full Markovian system (left) and the

coarse-grained system (right). (b) An example for a full trajectory (left) containing

the actual states and the corresponding coarse-grained trajectory (right)

containing only the observed states.
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1.3 Entropy production rate and irreversibility

This section presents the relation between EPR and irreversibility.

1.3.1 Irreversibility

For fixed observation time T , we denote a trajectory γT = {(i0, t0), . . . , (iN , tN)},

which is a chronological sequence of states (i0, . . . , iN} and waiting times {t0, . . . , tN},

and
∑

i ti = T . The time reversed trajectory is denoted by γ̃T = {(iN , tN), . . . , (i0, t0)}.

As mentioned in section 1.2, the waiting time distribution is an exponential

distribution with mean of 1/λ, together with the jump probabilities, pij, we get the

joint probability for transition and waiting time:

ψij(t) = wije
−λit (1.6)

Thus, the probability to observe the trajectory γ is:

P(γT ) = e−tNλiN

N−1∏
n=0

[win,in+1e
−tnλin ]πi0 (1.7)

where the initial state i0 is sampled from the steady-state probabilities π. Now we

construct a trajectory observable:

R[γT ] ≡ log

(
P [γT ]

P [γ̃T ]

)
(1.8)

where P [γ̃T ] is the probability to observe the reversed trajectory γ̃T .

After plugging Eq. 1.7 into Eq. 1.8:

R[γT ] = log

(
πi0
πiN

)
+

N−1∑
n=0

log

(
win,in+1

win+1,in

)
= log

(
πi0
πiN

)
+
∑
i,j

ϕij log

(
wij

wji

) (1.9)

where ϕij is the number of transitions i→ j in the trajectory γ:

ϕij =
N−1∑
n=0

δi,inδj,in+1 (1.10)
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The long-time average yields:

lim
T→∞

⟨R[γT ]⟩/T = lim
T→∞

 log
(
πi0
πiN

)
T

+
∑
i,j

ϕij

T
log

(
wij

wji

)
= 0 +

∑
i,j

nij log

(
wij

wji

)
=
∑
i,j

nij log

(
wij

wji

)
+
∑
i,j

nij log

(
πi
πj

)
=
∑
i,j

nij log

(
πiwij

πjwji

)
=
∑
i<j

(nij − nji) log

(
nij

nji

)

(1.11)

Notice that by definition nij = limT→∞ ϕij/T . In addition, we used
∑

i,j nij log

(
πi
πj

)
=

0:∑
i,j

nij log

(
πi
πj

)
=
∑
i,j

πiwij log(πi)−
∑
i,j

πiwij log(πj)

=
∑
i ̸=j

πiwij log(πi)−
∑
i ̸=j

πiwij log(πj) + [πi[W ]ii log(πi)− πi [W ]ii log(πi)]

=
∑
i,j

πi[W ]ij log(πi)−
∑
i,j

πi[W ]ij log(πj)

=
∑
i

πi(
∑
j

[W ]ij) log(πi)−
∑
j

(
∑
i

πi[W ]ij) log(πj)

(1.12)

By the definition of the rate matrix ∀i :
∑

j[W ]ij = 0 and from the master equation

at the steady state ∀j : 0 =
dπj
dt

=
∑

i πi[W ]ij.

Thus, we justified
∑

i,j nij log

(
πi
πj

)
= 0.

To quantify the time irreversibility we use the Kullback-Leibler divergence be-

tween the probability to observe the trajectory forward in time and the probability

to observe the reversed trajectory:

D[P [γT ]||P [γ̃T ]] =

∫
γT

P [γT ] log

(
P [γT ]

P [γ̃T ]

)
= ⟨log

(
P [γT ]

P [γ̃T ]

)
⟩ = ⟨R[γT ]⟩

(1.13)
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To conclude, from Eq. 1.11 and Eq. 1.13:

lim
T→∞

1

T
D[P [γT ]||P [γ̃T ]] =

∑
i<j

(nij − nji) log

(
nij

nji

)
(1.14)

1.3.2 Entropy production rate

We look at the ensemble-averaged entropy which depend on the state probabili-

ties of the system, pi.

S = −kB
∑
i

pi log(pi) (1.15)

Now we take a derivative by time.

dS

dt
= −kB

∑
i

[
dpi
dt

log(pi) + pi
1

pi

dpi
dt

]
= −kB

∑
i

dpi
dt

log(pi)− kB
∑
i

dpi
dt

= −kB
∑
i

dpi
dt

log(pi)− kB
d(
∑

i pi)

dt
= −kB

∑
i

dpi
dt

log(pi)− kB
d(1)

dt

= −kB
∑
i

dpi
dt

log(pi)

(1.16)

Using the Markovian master equation:

dpi
dt

(t) =
∑
j

pj(t)[W]ji (1.17)

We get:

dS

dt
= −kB

∑
i

dpi
dt

log(pi) = −kB
∑
i,j

pj[W]ji log(pi) (1.18)

By the definition of the rate matrix W:

∀j :
∑
i

[W]ji = 0 (1.19)



1. INTRODUCTION 10

Thus:

dS

dt
= −kB

∑
i,j

pj[W]ji log(pi)

= −kB
∑
i,j

pj[W]ji log(pi) + kB
∑
j

pj

(∑
i

[W]ji

)
log(pj)

= −kB
∑
i,j

pj[W]ji log(pi) + kB
∑
i,j

pj[W]ji log(pj)

= −kB
∑
i,j

pj[W]ji log

(
pi
pj

)
=
kB
2

∑
i,j

(pi[W]ij − pj[W]ji) log

(
pi
pj

)
=
kB
2

∑
i,j

(pi[W]ij − pj[W]ji) log

(
pi[W]ij
pj[W]ji

)
+
kB
2

∑
i,j

(pi[W]ij − pj[W]ji) log

(
[W]ji
[W]ij

)
≡ σtot + Ṡe

(1.20)

Where:

σtot =
kB
2

∑
i,j(pi[W]ij − pj[W]ji) log

(
pi[W]ij
pj[W]ji

)
is the entropy production rate.

Ṡe =
kB
2

∑
i,j(pi[W]ij − pj[W]ji) log

(
[W]ji
[W]ij

)
is the entropy flow.

Therefore, we got the expression for the steady-state entropy production rate (set-

ting kB = 1 and pi = πi):

σtot =
∑
i<j

(πiwij − πjwji) log

(
πiwij

πjwji

)
=
∑
i<j

(nij − nji) log

(
nij

nji

) (1.21)

Which bring us to the relation between EPR to irreversibility. Eq. 1.14 from the

previous section together with Eq. 1.21 from this section, gives us:

σtot = lim
T→∞

1

T
D[P [γT ]||P [γ̃T ]] (1.22)

Therefore, EPR can be used to quantify the irreversibility of a process.
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1.4 Passive partial production rate

The passive partial entropy production rate, σpp, is an estimator for the EPR

calculated from the transitions between two observed states, which bounds the total

EPR [49, 56–58]. Suppose we observe only two states i′ and j′, which are Markovian,

and the transitions between them. Thus, we can calculate the transition mass

rates ni′j′ and nj′i′ in order to calculate the entropy production inferred from the

transitions between them:

σpp = (ni′j′ − nj′i′) log(
ni′j′

nj′i′
) (1.23)

We can easily see that σpp is a lower bound for the total entropy production:

σtot =
∑
i<j

(nij − nji) log(
nij

nji

)

= (ni′j′ − nj′i′) log(
ni′j′

nj′i′
) +

∑
i<j

(i,j)̸=(i′,j′)

(nij − nji) log(
nij

nji

)

≥ (ni′j′ − nj′i′) log(
ni′j′

nj′i′
) = σpp

This estimator, however, fails to provide a non-zero bound in case of vanishing

current over the observed link, i.e., at stalling conditions [49]. Other EPR estimators

for partially observed systems based on inequality relations like the TUR [25–27,

33, 34] also fail to provide a non-trivial bound on the total EPR in the absence of

net flux in the system.

1.5 KLD estimator

The Kullback-Leibler Divergence (KLD) estimator, σKLD, is based on the KLD,

or the relative entropy, between the time-forward and the time-revered path prob-

abilities [22, 47, 59–63]. For semi-Markov processes, this estimator is a sum of

two contributions. The first stems from transitions irreversibility or cycle affini-

ties, σaff, whereas the second stems from broken time-reversal symmetry reflected in

irreversibility in waiting time distributions (WTD), σWTD [64].
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For this estimator, they consider statistics based on second-order transitions. We

take into account the former observed state in addition to the current one. We use

a new description where a state in our trajectory consists of the former state I and

the current one J . Thus, a state in our new trajectory is described as [IJ ]. Then,

we calculate the KLD bwtween the forward and backward path probabilities based

on this description.

σKLD = σaff + σWTD

=
1

T
∑
I,J,K

pIJK log

(
p([IJ ] → [JK])

p([KJ ] → [JI])

)
+

1

T
∑
I,J,K

pIJKD [ψIJK(t)||ψKJI(t)]

(1.24)

where p([IJ ] → [JK]) is the probability to observe the transition J → K given the

previous transition was I → J , pIJK is the probability to observe the second-order

transition I → J → K, and D[p||q] is the KLD between the probability distributions

p and q.

Using the KLD estimator, one can obtain a non-trivial lower bound on the total

EPR for second-order semi-Markov processes even in the absence of observed net

current [36, 64–66, 74]. Moreover, a lower bound on the total EPR can be obtained

from the KLD between transition-based WTD [60, 65, 67].

1.6 Optimization based estimators

Recently developed estimators solved an optimization problem to obtain a lower

bound on the entropy production.

1.6.1 σfit estimator

For a discrete-time model, Ehrich proposed to search over the possible underlying

systems that maintain the same observed statistics using knowledge on the number

of hidden states [68]. The optimization problem is formulated on a specific system
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of four states with two observed states and two states coarse-grained as one. A

similar formulation can be applied on similar systems as long as the number of the

observed states is equal to the number of hidden states and the matrices of jump

probabilities can be inverted.

1.6.2 σ2 estimator

For continuous-time models, Skinner and Dunkel minimized the EPR on a canon-

ical form of the system that preserved the first- and second-order transition statistics

to yield a lower bound on the total EPR, σ2 [69]. The canonical form can be reached

by applying a few steps which changes the underlying system and each step is shown

to not raise the EPR while keeping the first and second-order mass rate statistics.

Furthermore, they showed that for each 3 coarse-grained states {I, J , K}, the num-

ber of inner states of J in the canonical form, which are connected to I and K, is at

most four in order to get the minimum EPR. Since the canonical form has a simple

topology we can easily get the constraints for the optimization problem, which make

sure the observed statistics are conserved.

1.6.3 σT estimator

Skinner and Dunkel also formulated an optimization problem to infer the EPR

in a system with two observed states using the waiting time statistics [35]. With a

simple re-scaling to the rates and steady-state probabilities of the underlying system,

they show you can get an estimator which equals to a factor
2kB

⟨tA⟩+ ⟨tB⟩
multiplied

by the value of a function Λ which depends only on the ratio
Var tA
⟨tA⟩2

, where tA

and tB represent the waiting times in each of the observed states. The function Λ

can be computed numerically, by solving an optimization problem, for each value of
Var tA
⟨tA⟩2

.



2

Method

Can we find a better estimator which outperforms the previous ones?

In order to achieve that, we introduce a novel method, which utilizes additional

information that was not considered in previous works. This information is the

underlying system topology.

2.1 Bounding the entropy production rate

Given a coarse-grained system with a model of the full underlying Markovian

network topology, we can formulate an optimization problem for obtaining a tight

bound on the total EPR. We consider a few observables: the coarse-grained steady-

state probabilities, πI , which is the probability of observing the system in the coarse-

grained state I; the first-order mass rates, nIJ , which is the rate of observing the

transition I → J ; the second order mass rates, nIJK , which is the rate of observing

the transition I → J followed by the transition J → K; and the conditional waiting

time distributions ψIJK(t), which is the distribution of waiting times in a coarse-

grained state J before a transition to a coarse-grained state K occurs, conditioned

on the previous transition being I → J .

We search over the space of all possible underlying systems with the same topol-

ogy as our hypothesized Markovian model that give rise to the same observed statis-

14
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tics, while minimizing the EPR. Trivially, the EPR of the coarse-grained system at

hand is bounded from below by the EPR of the underlying Markovian system with

the same observed statistics after coarse-graining, having the minimal value of en-

tropy production.

2.1.1 Analytical expressions of the observed statistics

The observed statistics of the coarse-grained system can be expressed analytically

in terms of the mass rates and steady-state probabilities of the model underlying sys-

tem. From probability and mass conservation, πI =
∑

i∈I πi, and nIJ =
∑

i∈I,j∈J nij,

respectively. The mass conservation for the second-order transitions nIJK must in-

clude all the paths starting at state i ∈ I, passing through a state in J , where any

number of transitions might occur inside J , and jumping to state k ∈ K. To account

for the transitions within J , we define the matrix PJJ of the transition probabilities

between states in J , jm, jn ∈ J :

[PJJ ]mn =

pjmjn m ̸= n

0 m = n

(2.1)

Summing over the possible transitions from I, transitions within J , and transitions

to K, we have (see Appendix A):

nIJK =
∑

i∈I,k∈K

nT
iJ [I− PJJ ]

−1pJk (2.2)

where I is the identity matrix of the size of PJJ , and niJ and pJk are column vectors

of the mass rates from state i ∈ I to any state j ∈ J , and jump probabilities from

any state j ∈ J to a state k ∈ K, respectively:

nT
iJ = [nij1 , nij2 , · · · , nijNJ

] (2.3)

and:

pTJk = [pj1k, pj2k, · · · , pjNJ
k] (2.4)

The conditional waiting time distribution ψIJK(t) can be calculated by the

Laplace and inverse-Laplace transforms (full derivations can be found in Appendix B).
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We start from the Laplace transform of ψij(t) = wije
−λit, the joint probability dis-

tribution of the transition i→ j and the waiting time in the Markovian state i:

ψ̃ij(s) = L{ψij(t)} =

∫ ∞

0

ψij(t)e
−tsdt =

wij

s+ λi
(2.5)

Note that for any function f(t), f̃(s → 0) =
∫∞
0
f(t)e−tsdt|s→0 =

∫∞
0
f(t)dt is

the normalization of f(t). Here, ψij(t) is normalized to pij, i.e., pij =
∫∞
0
ψij(t)dt

(Eq. 1.3).

Now, we consider the simple case where the second-order transition through the

coarse-grained state J starts and ends in specific Markovian states i ∈ I and k ∈ K,

respectively. The Laplace transform of the distribution of waiting times in J before

a transition to k occurs, given the previous transition was i→ J is:

ψ̃iJk(s) =
pTiJ∑
j∈J pij

[I− Ψ̃JJ(s)]
−1ψ̃Jk(s) (2.6)

where

ψ̃T
Jk(s) = [ψ̃j1k(s), ψ̃j2k(s), · · · , ψ̃jNj

k(s)] (2.7)

and Ψ̃JJ(s) is a matrix of the Laplace transforms of every joint probability distri-

bution of waiting times and transitions within J :

Ψ̃JJ(s) =

ψ̃jmjn(s) m ̸= n

0 m = n

(2.8)

We denote ψ̃iJK(s) ≡
∑

k∈K ψ̃iJk(s). Then, the Laplace transform of the condi-

tional waiting time distribution is:

ψ̃IJK(s) =
∑
i∈I

πi
πI

ψ̃iJK(s)

ψ̃iJK(s→ 0)
(2.9)

Finally, we apply an inverse Laplace transform to obtain the conditional proba-

bility density:

ψIJK(t) = L−1{ψIJK(s)} (2.10)

We further impose mass conservation at each of the Markovian states according

to Eq. 1.5, to make sure the solution represents a valid Markovian system.
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2.1.2 Formalizing the optimization problem

Let S be the real underlying Markovian system and letR be a general underlying

system with the same topology as S, i.e., the same states and possible transitions

as S, but R can have arbitrary mass rates and steady-state probabilities. Given

the set of all systems R with the same steady-state probabilities πR
I = πS

I , same

first-order mass rates nR
IJ = nS

IJ , same second-order mass rates nR
IJK = nS

IJK , and

the same conditional waiting time distributions ψR
IJK(t) = ψS

IJK(t), as the system S,

the following inequality holds for the EPR of S and R, σ(S) and σ(R), respectively:

σtot(S) ≥ min
R

{σtot(R)|∀I,J,K : πR
I = πS

I , n
R
IJ = nS

IJ ,

nR
IJK = nS

IJK ,

ψR
IJK(t) = ψS

IJK(t)} ≡ σ
(∞)
opt

(2.11)

where σ
(∞)
opt is the minimal EPR value of all the possible underlying systems R. The

inequality holds since the real system S belongs to the set of systems over which we

minimize. The only variables of the optimization problem are nij and πi, from which

one can fully describe any of the possible underlying Markovian systems R. All the

constraints, πI , nIJ , nIJK , and ψIJK(t), as well as the EPR objective function,

depend on these variables. Note that these variables are bounded by 0 ≤ πi ≤ πI

and 0 ≤ nij ≤ nIJ .

In contrast to the constraints on the steady-state probabilities and the first-

and second-order mass rate values, the constraint on the waiting-time distributions

requires an equality of continuous functions ψIJK(t), which one cannot fully recon-

struct from trajectory data of finite duration. Moreover, solving the optimization

problem using a constraint on a function with non-trivial dependency on the opti-

mization problem variables is extremely challenging. Thus, we modify the optimiza-

tion, and instead, use the moments of the waiting time distributions:

σ
(n)
opt(S) ≡ min

R
{σtot(R)|∀I,J,K : πR

I = πS
I , n

R
IJ = nS

IJ ,

nR
IJK = nS

IJK ,

∀k∈{1,2,...,n} : ⟨tkIJK⟩R = ⟨tkIJK⟩S}

(2.12)
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where ⟨tkIJK⟩ is the k-th moment of the conditional waiting time distribution ψIJK(t).

Using an increasing number of moments, we can write the hierarchical bounds:

∀n∈N : σtot(S) ≥ σ
(∞)
opt (S) ≥ σ

(n)
opt(S) ≥ · · · ≥ σ

(1)
opt(S) (2.13)

We can easily get the analytical expressions for the moments ⟨tkIJK⟩ from the

Laplace transform (see Appendix B):

⟨tkIJK⟩ = (−1)k
dkψ̃IJK(s)

dsk
|s→0 (2.14)

Now, for each moment, we have an expression that depends on the optimization

problem variables in a simpler way, which in turn, simplifies the calculations. After

calculating the values of the observables for the optimization problem, we solve it

using a global search non-linear optimization algorithm [75].



3

Results

3.1 Examples

We apply our proposed estimator to several model systems and compare its

performance to the previous bounds on the total EPR.

3.1.1 4-state system

We consider a fully-connected network of 4 states, with two Markovian observed

states {1, 2} and two hidden states {3, 4}, which are coarse-grained to state H

(Fig. 3.1(a)), resulting in second-order semi-Markov dynamics [64]. The observed

statistics of interest are the steady state probabilities π1, π2 and πH , the first-order

mass rates n1H , nH1, n2H , and nH2, the second-order mass rates n1H2 and n2H1 and

the k-th moment of the conditional waiting time distributions ⟨tk1H1⟩, ⟨tk1H2⟩, ⟨tk2H1⟩

and ⟨tk2H2⟩. Notice we only used the second-order statistics through the coarse-

grained state H, since states 1 and 2 are Markovian. Furthermore, we do not use

n1H1 and n2H2 since they depend on the other mass rates: n1H1 = n1H − n1H2 and

n2H2 = n2H − n2H1. The derivations of the analytical expressions of the second-

order mass rates and the moments of the conditional waiting time moments, for this

system, can be found in Appendix C.

We tune the transition rates over the observed link between states 1 and 2

19



3. RESULTS 20

according to w12(F ) = w12e
−βFL and w21(F ) = w21e

βFL, where β = T−1 is the

inverse temperature (with kB = 1), and L is a characteristic length scale, to mimic

external forcing. We compare the different EPR estimators on the system for several

values for a driving force F over the observed link (Fig. 3.1(b)).

The passive partial EPR [49]:

σpp = (π1w12 − π2w21) log

(
π1w12

π2w21

)
= (n12 − n21) log

(
n12

n21

) (3.1)

The KLD estimator is the sum of two contributions:

σKLD = σaff + σWTD

=
1

T
∑
I,J,K

pIJK log

(
p([IJ ] → [JK])

p([KJ ] → [JI])

)
+

1

T
∑
I,J,K

pIJKD [ψIJK(t)||ψKJI(t)]

(3.2)

where p([IJ ] → [JK]) is the probability to observe the transition J → K given the

previous transition was I → J , pIJK is the probability to observe the second-order

transition I → J → K, and D[p||q] is the KLD between the probability distributions

p and q. As was previously shown, the hierarchy between the EPR estimators is

σKLD ≥ σaff ≥ σpp [49, 64].

The σ2 estimator is also formulated as an optimization problem searching over

a canonical form of the system with the same observed statistics, however, it only

considers the first- and second-order mass rates [69]. Its place in the hierarchy

between the EPR estimators varies for different systems. While σ2 can be greater

than σKLD in some cases [69], here, for the rate values we used, σ2 < σKLD. In

fact, although the values of σ2 and σaff appear to be similar (Fig. 3.1(b)), actually

σ2 < σaff for all of the values of F used.

At the stalling force, there is no current in the visible link, and we get σpp =

σaff = σ2 = 0, which is the trivial bound. In contrast, σKLD and our estimator σ
(1)
opt

give a non-trivial bound. Moreover, σ
(1)
opt surpasses σKLD significantly and yields a

tight bound. For this system, using higher moments in order to calculate σ
(2)
opt did

not make any improvement compared to σ
(1)
opt.
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While the example in this section is of a system with 3 observed states, 2 of

which are Markovian, our approach can be generalized to any system. For example,

see Appendix E for a system with 4 observed states, 3 of which are Markovian,

where the σ
(1)
opt estimator still outperforms σKLD and σ2.
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Figure 3.1: 4-state system. (a) Illustration of the full 4-state system topology,

including the coarse-graining of states 3 and 4 to state H. (b) Total EPR σtot

(solid black line), our bound σ
(1)
opt (brown cross), KLD estimator σKLD (dotted blue

line), affinity estimator σaff (dashed green line), two-step estimator σ2 (yellow

Asterisk), and the passive partial entropy production σpp (dashed-dotted orange

line). The rates we used are w12 = 3 s−1, w13 = 0 s−1, w14 = 8 s−1, w21 = 2 s−1,

w23 = 50 s−1, w24 = 0.2 s−1, w31 = 0 s−1, w32 = 2 s−1, w34 = 75 s−1, w41 = 1 s−1,

w42 = 35 s−1, w43 = 0.7 s−1.



3. RESULTS 23

3.1.2 Molecular motor

Here, we study a model of a molecular motor, illustrated in Fig. 3.2(a). The

motor can physically move in space (upward or downward), i ↔ i + 1, or change

internal states (passive or active), i ↔ i′. An external source of chemical work ∆µ

drives the upward spatial jumps from the active state, and a mechanical force F

acts against it and drives the downward transitions. We assume that an external

observer cannot distinguish between the internal states of the motor, but rather can

only record its physical position. The observed statistics are thus of a second-order

Semi-Markov process [64].

Owing to the transnational symmetry in the model, we represent the molecule

motor as a cyclic network of three coarse-grained states where each of them rep-

resents the physical location, lumping the active and passive internal states. We

denote the steady-state probability of being in the passive and active states as π

and π′, respectively. Notice that the probability of being in each physical location

in the 3-state cyclic system is the same, and that π and π′ are the same for all of

the physical locations, therefore, π + π′ = 1/3.

We denote the upward and downward transitions from and to the passive state as

u1 and d1, respectively, the upward and downward transitions from and to the active

state as u2 and d2, respectively, and the transitions between the active and passive

states at the same physical location as r (right) and l (left), respectively. The upward

and downward coarse-grained transitions are labeled as U and D, respectively.

The observed statistics of interest are the first-order mass rates nU , nD, the

second-order mass rates nUU , nDD and the k-th moment of the conditional waiting

times ⟨tkUU⟩, ⟨tkUD⟩, ⟨tkDU⟩ and ⟨tkDD⟩. Note that we do not use nUD and nDU , since

they depend on the other mass rates: nUD = nU−nUU and nDU = nD−nDD. Owing

to the symmetry of the cycle representation of the coarse-grained system, in which

the steady-state probabilities are equally distributed, we only need the constraints on

the upward and downward transitions. The derivations of the analytical expressions

of the second-order mass rates and the moments of the conditional waiting time
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distributions, for this system, can be found in Appendix D.

The chemical affinity µ, arising from ATP hydrolysis for example, only affects

the transitions u2 and d2, whereas the external force F affects all of the spatial

transitions u1, d1, u2 and d2. The transition rates then obey local detailed balance:

wd1/wu1 = eβFL and wd2/wu2 = eβ(FL−µ), where L is the length of a single spatial

jump [64].

We compare the different EPR estimators for the molecular motor system for

several values of µ, and for each µ value, we tune the external forcing parameter F

(Fig. 3.2(b)). Notice the passive partial EPR, σpp, is not applicable for this system

since all the original Markovian states are coarse-grained.

The hierarchy of the different EPR estimators for the molecular motor, for the

rate values we used, is σ
(1)
opt ≥ σKLD ≥ σaff ≥ σ2. At the stalling force for each value

of µ, where there is no visible current, we find σaff = σ2 = 0, which is the trivial

bound. In contrast, similar to the 4-state system, σ
(1)
opt surpasses σKLD significantly

and yields a tight bound.
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Figure 3.2: Molecular motor. (a) Illustration of the full molecular motor system

including the coarse-graining of the active (red boxed square) and passive (ellipse)

states. (b) Total EPR σtot (solid black line), our bound σ
(1)
opt (brown cross), KLD

estimator σKLD (dotted blue line), the affinity estimator σaff (dashed green line),

and the two-step estimator σ2 (yellow Asterisk). The rates we used are

wr = wl = wu2 = wd2 = 1 s−1, wu1 = wd1 = 0.01 s−1.
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3.2 Importance of data accuracy

One of the hyperparameters defining the optimization problem is the constraint

tolerance, which indicates the acceptable numerical error of the solution. If ϵ is

the absolute error of the trajectory statistics with respect to the true analytical

ones, then the constraint tolerance must be equal to or greater than ϵ. Otherwise,

when the constraint tolerance is smaller than the absolute error of the statistics, the

optimization problem might not converge or give an overestimation in the worst-case

scenario.

In Fig. 3.3, we plot the absolute (and relative) error of a few statistics values

calculated from several trajectories as a function of the trajectory length N , for both

systems discussed in the previous sections. Moreover, using the analytical values of

the statistics for maximum accuracy, we plot the results of our estimator σ
(1)
opt as a

function of the constraint tolerance.

As expected, longer trajectory data result in a more accurate estimation of the

observed statistics used for our optimization problem for both systems, as evident

from the values of n1H , n1H2 and ⟨t1H2⟩ for the 4-state system (Fig. 3.3(a)), and from

the values of nU , nUU , and ⟨tUU⟩ for the molecular motor (Fig. 3.3(b)). For smaller

errors, we can use a smaller constraint tolerance. The error bars in Fig. 3.3(a)

and (b), which are the standard deviation of the values of the observables in dif-

ferent realizations of trajectories with the same size, can be used as a scale for the

appropriate constraint tolerance.

For both systems, smaller constraint tolerance leads to a better estimator as the

value of the lower bound on the EPR approaches the true analytical value (Fig. 3.3(c)

and (d)), demonstrating the importance of an accurate estimation of the observables.
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(a)

(c)

(b)

(d)

Figure 3.3: Importance of data accuracy. (a) The error of some statistics of the

4-state system for different values of the trajectory length N . The absolute and

relative errors are on the left and right axes, respectively. (b) The error of some

statistics of the molecular motor system for different values of the trajectory

length N . The absolute and relative errors are on the left and right axes,

respectively. (c) The error of σ
(1)
opt results for the 4-state system for different

constraint tolerance values, using the analytical statistics values. (d) The error of

σ
(1)
opt results for the molecular motor system for different constraint tolerance

values, using the analytical statistics values. Error bars stand for the standard

deviation of 10 different realizations.
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3.3 Optimizing a simple model

Although our approach can be generalized to any number of hidden states, the

analytical expressions for the observables become complicated, and the number of

variables increases for a more complex coarse-grained topology. In turn, solving

the optimization problem would require longer computation times. In order to test

the performance of our estimator, we solved the optimization problem for a larger

number of hidden states in a fully-connected network of 4, 5, and 6 states with only

2 Markovian observed states, assuming only 2 states are coarse-grained (Fig. 3.4(a)).

Similarly, we tested the performance of our estimator for the case of the molecular

motor with 2, 3, and 4 internal states at each physical position, assuming there are

only 2. While generally, the estimator gives a more accurate result for the case of

the 2 hidden state, which matches the assumption, it still provides a lower bound on

the total EPR with comparable accuracy for a larger number of hidden states in the

two systems (Fig. 3.4(b) and (c)). Moreover, our σ
(1)
opt estimator can still outperform

other estimators, σKLD and σ2, as demonstrated for the case of a 5-state system with

2 Markovian observed states and one coarse-grained state of three internal states in

Appendix F.
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Figure 3.4: Optimizing using a simple model. (a) Illustration of solving the

optimization problem for a simple model with 2 hidden states (right), whereas the

real system has more hidden states (left). (b) The results of σ
(1)
opt assuming the

simple 4-state model (2 hidden states), when the real system has 2 (red cross), 3

(green triangle) or 4 (blue circle) hidden states. (c) The results of σ
(1)
opt assuming

the simple molecular motor model (2 hidden states), when the real system has 2

(red cross), 3 (green triangles) or 4 (blue circle) hidden states. For both systems,

the results are presented for random generated transition rates (for each case) with

statistics calculated from trajectories of length N = 108 using a constraint

tolerance of 10−5.
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Conclusions

We present a new estimator for the entropy production rate, which gives a tight

bound by formulating an optimization problem using both transitions and waiting

times statistics. Such data is readily available in different experimental settings, for

example, tracking a bead attached to a rotating bacterial flagellum [69, 76], or corti-

cal granules embedded in the actomyosin cortex of an oocyte [77]. Our estimator can

be applied to any system with a known topology, and it significantly surpasses pre-

vious estimators, as demonstrated for the two studied systems, the fully-connected

hidden network, and the molecular motor. The variables for the optimization prob-

lem can be inferred from the observed statistics, where longer trajectories result in

more accurate estimation and enable a smaller constraint tolerance value. Finally,

for both systems, our approach can provide a lower bound on the total EPR for more

complex systems, assuming a simpler underlying topology of the hidden states. Al-

though we numerically showed that searching over all the systems with a simpler

topology of the hidden part and the same observed statistics as the true system

gave a lower bound on the total EPR for the two systems we studied, it remains an

open problem to show this approach is universal. It would be interesting for future

work to determine whether removing states from the hidden sub-network can only

decrease the entropy production, given the observed statistics are conserved.

In summary, our approach is based on an optimization problem formulated using

the observed statistics of a partially accessible system, utilizing information on the

30
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underlying topology, in order to provide a tight lower bound on the total EPR.

The estimator can be used as a benchmark for comparing the performance of other

estimators that rely on coarse-grained or partial information about the system.
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Appendix A

Second-order mass rates

In order to find the second-order mass rates for two consecutive transitions be-

tween coarse-grained states, nIJK , we need to take into account every possible orig-

inal state i ∈ I, every possible path within the coarse-grained state J , and every

possible transition from a state in J to every possible final state k ∈ K. Let us start

by considering a specific initial Markovian state i ∈ I and a specific final Markovian

state k ∈ K and calculate the mass rate niJk:

niJk =
∞∑

N=0

∑
j0,...,jN∈J

nij0pj0j1pj1j2 · · · pjN−1jNpjNk

=
∞∑

N=0

∑
j′,j′′∈J

nij′
[
PN

JJ

]
j′j′′

pj′′k

=
∑

j′,j′′∈J

nij′

(
∞∑

N=0

[
PN

JJ

]
j′j′′

)
pj′′k

=
∑

j′,j′′∈J

nij′ [I− PJJ ]
−1
j′j′′ pj′′k

= nT
iJ [I− PJJ ]

−1 pJk

(A.1)

The two summations are for all the possible lengths N of trajectories within J ,

and all the optional paths with the given length {j0, j1, · · · , jN} in J . From mass

conservation, we can now obtain the expression for nIJK by summing over all the

optional original i ∈ I and final k ∈ K states:

nIJK =
∑
i∈I

∑
k∈K

niJk (A.2)
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Appendix B

Conditional waiting time moments

The waiting time at each Markovian state i is an exponentially distributed ran-

dom variable ψi(t) with mean waiting time τi = λ−1
i :

ψi(t) = λie
−λit (B.1)

For the calculations, we used the joint distribution of the waiting time and the

transition i→ j:

ψij(t) = wije
−λit (B.2)

Notice that ψij(t) is not normalized to 1 as
∫∞
0
ψij(t)dt = pij.

The probability to observe a trajectory γN : i0 → i1 → · · · → iN with a total

duration of T is:

p(γN , T ) =

=

∫
N−1∑
i=0

ti=T

ψi0i1(t0)ψi1i2(t1) · · ·ψiN−1iN (tN−1)

dt0dt1 · · · dtN−1

(B.3)

Since this is a convolution, we can perform a Laplace transform to get a simpler

formula of multiplications of Laplace transforms of Markovian joint distributions of

waiting times and transitions:

p̃(γN , s) = ψ̃i0i1(s)ψ̃i1i2(s) · · · ψ̃iN−1iN (s) (B.4)
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where

ψ̃ij(s) =

∫ ∞

0

ψij(t)e
−stdt =

∫ ∞

0

wije
−λite−stdt

= wij

∫ ∞

0

e−(s+λi)tdt = wij

[
−e

−(s+λi)t

s+ λi

]∞
0

=
wij

s+ λi

(B.5)

In order to calculate the moments of the conditional waiting time distribution

ψIJK(t) for the coarse-grained state J conditioned on an initial state in I and a final

state in K, our strategy is to calculate its Laplace transform ψ̃IJK(s). We start

by calculating ψ̃iJk(s) which is the Laplace transform of the waiting distribution in

coarse-grained state J , before jumping to a specific Markovian state k ∈ K, given

it came from a specific Markovian state i ∈ I. Since we want the waiting time in J ,

we sum over all of the paths with any length N inside J with a final transition to

k ∈ K, j0 → j1 → · · · → jN → k, weighed by the probability to jump from i ∈ I to

the first state j0 ∈ J :

ψ̃iJk(s) =

=

∞∑
N=0

∑
j0,...,jN∈J

pij0∑
j∈J

pij
p̃(j0 → j1 → · · · → jN → k, s)

=

∞∑
N=0

∑
j0,...,jN∈J

pij0∑
j∈J

pij
ψ̃j0j1(s) · · · ψ̃jN−1jN (s)ψ̃jNk(s)

=
∞∑

N=0

∑
j′,j′′∈J

pij′∑
j∈J

pij

[
Ψ̃JJ(s)

N
]
j′,j′′

ψ̃j′′k(s)

=
∑

j′,j′′∈J

pij′∑
j∈J

pij

∞∑
N=0

[
Ψ̃JJ(s)

N
]
j′,j′′

ψ̃j′′k(s)

=
∑

j′,j′′∈J

pij′∑
j∈J

pij

[
I− Ψ̃JJ(s)

]−1

j′,j′′
ψ̃j′′k(s)

=
pTiJ∑

j∈J
pij

[
I− Ψ̃JJ(s)

]−1

ψ̃Jk(s)

(B.6)

where Ψ̃JJ(s) is a matrix of size NJ×NJ , and NJ is the number of Markovian states
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inside J : [
Ψ̃JJ(s)

]
j1,j2

=

Ψ̃j1j2(s) j1 ̸= j2

0 j1 = j2

(B.7)

As mentioned in the main text we denote ψ̃iJK(s) ≡
∑

k∈K ψ̃iJk(s). Notice that

ψ̃iJK(s) is not normalized to 1 and it needs to be divided by ψ̃iJK(s→ 0), which is

exactly the probability to jump from J to K, given the transition to J was from i.

ψ̃Normalized
iJK (s) =

ψ̃iJK(s)

ψ̃iJK(s→ 0)
(B.8)

This results from the fact that we used ψij(t), which is normalized to pij.

In order to get ψ̃IJK(s), we sum ψ̃Normalized
iJK (s) over all of the Markovian states

i ∈ I, weighed by the corresponding probability πi/πI of being in state i, given the

system is in the coarse-grained state I:

ψ̃IJK(s) =
∑
i∈I

πi
πI
ψ̃Normalized
iJK (s) (B.9)

For a general probability density function f(t) : [0,∞] → [0, 1] the Laplace

transform is:

f̃(s) =

∫ ∞

0

f(t)e−stdt (B.10)

and its k-th derivative by s is:

dkf̃(s)

dsk
= (−1)k

∫ ∞

0

tkf(t)e−stdt (B.11)

Taking the limit s→ 0:

dkf̃(s)

dsk
|s→0 = (−1)k

∫ ∞

0

tkf(t)dt

= (−1)k⟨tk⟩
(B.12)

we find the k-th moment of the probability density function f(t):

⟨tk⟩ = (−1)k
dkf̃(s)

dsk
|s→0 (B.13)

Therefore, the k-th moment ⟨tkIJK⟩ of the conditional waiting time distribution

ψIJK(t) is:

⟨tkIJK⟩ = (−1)k
dkψ̃IJK(s)

dsk
|s→0 (B.14)



Appendix C

Analytical expressions for the

4-state system

The variables to consider for this system are the mass rates nij and the steady-

state probabilities πi for i, j ∈ {1, 2, 3, 4}, meaning a total of 16 variables. Note

that π1, π2, n12 and n21 are fully observed. Therefore, we are left with 12 variables.

With the following linear constraints, we can immediately reduce the problem to 6

variables.

C.1 Linear constraints

We impose probability conservation, mass rate conservation in the hidden Marko-

vian states, and mass rate conservation between an observed Markovian state and

the hidden coarse-grained state.

C.1.1 Probabilities

From the conservation of the steady-state probability of the Markovian states

within the coarse-grained hidden state:

πH = π3 + π4 (C.1)
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C.1.2 Mass conservation at any Markovian state

We write the mass conservation for one of the hidden states (3 or 4), which for

this system, is enough to guarantee the mass conservation for the other hidden state:

n13 + n23 + n43 = n31 + n32 + n34 (C.2)

C.1.3 First-order mass rates

Here, we require the mass rate conservation of transitions in and out of the

hidden state, providing 4 constraint equations:

∀i∈{1,2} : niH = ni3 + ni4

∀i∈{1,2} : nHi = n3i + n4i

(C.3)

C.2 Non-linear constraints

The second-order mass rates and the conditional waiting times moments can be

expressed only as a non-linear function of the optimization problem variables. Here,

we show the full derivations of these relations.

C.2.1 Second-order mass rates

For this system, as mentioned in the text, we are interested in n1H2 and n2H1,

where the first and the last states are the observed Markovian states. From equation

Eq. A.1:

niHj = n
T
iH [I− PHH ]

−1 pHj (C.4)

Where

PHH =

 0 p34

p43 0

 (C.5)

and

[I− PHH ]
−1 =

1

1− p34p43

 1 p34

p43 1

 (C.6)
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Plugging into Eq. C.4, we have:

niHj = n
T
iH [I− PHH ]

−1 pHj

=
[
ni3 ni4

] 1

1− p34p43

 1 p34

p43 1

p3j
p4j


=

1

1− p34p43

[
ni3 ni4

]p3j + p34p4j

p4j + p43p3j


=
ni3(p3j + p34p4j) + ni4(p4j + p43p3j)

1− p34p43

(C.7)

Remember we can express pij in terms of the mass rates (Eq. 1.3).

C.2.2 Conditional waiting time moments

We calculate the conditional waiting times moments ⟨tkiHj⟩ for i, j ∈ {1, 2}, in

terms of the problem variables. Based on Eq. B.14, we need to calculate ψ̃Normalized
iHj (s).

From Eq. B.6:

ψ̃iHj(s) =
pTiH∑

h∈{3,4}
pih

[
I− Ψ̃HH(s)

]−1

ψ̃Hj(s) (C.8)

Now, we can calculate ψ̃Hj(s) from Eq. 2.7 and Eq. B.5:

ψ̃Hj(s) =

ψ̃3j(s)

ψ̃4j(s)

 =

 w3j

s+ λ3
w4j

s+ λ4

 (C.9)

Given that (Eq. B.7 and Eq. B.5):

Ψ̃HH(s) =

 0 ψ̃34(s)

ψ̃43(s) 0


=

 0
w34

s+ λ3
w43

s+ λ4
0


(C.10)
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We can plug into Eq. C.8:

ψ̃iHj(s) =

=
pTiH∑

h∈{3,4}
pih

[
I− Ψ̃HH(s)

]−1

ψ̃Hj(s)

=
1

pi3 + pi4

[
pi3 pi4

]
(1− w34w43

(s+ λ3)(s+ λ4)

)−1

 1
w34

s+ λ3
w43

s+ λ4
1




 w3j

s+ λ3
w4j

s+ λ4


=

1

pi3 + pi4

(
1− w34w43

(s+ λ3)(s+ λ4)

)−1

[
pi3 pi4

] w3j

s+ λ3
+

w34

s+ λ3

w4j

s+ λ4
w4j

s+ λ4
+

w43

s+ λ4

w3j

s+ λ3


=

(
1− w34w43

(s+ λ3)(s+ λ4)

)−1

[
pi3

pi3 + pi4

(
w3j

s+ λ3
+

w34

s+ λ3

w4j

s+ λ4

)
+

pi4
pi3 + pi4

(
w4j

s+ λ4
+

w43

s+ λ4

w3j

s+ λ3

)]

(C.11)

Since the states i and j are Markovian, we just need to normalize this expression

in order to get the desired result:

ψ̃iHj(s→ 0) =

=

(
1− w34w43

λ3λ4

)−1

[
pi3

pi3 + pi4

(
w3j

λ3
+
w34

λ3

w4j

λ4

)
+

pi4
pi3 + pi4

(
w4j

λ4
+
w43

λ4

w3j

λ3

)]
=
pi3 (p3j + p34p4j) + pi4 (p4j + p43p3j)

(pi3 + pi4) (1− p34p43)

(C.12)

Therefore:

ψ̃Normalized
iHj (s) =

ψ̃iHj(s)

ψ̃iHj(s→ 0)
(C.13)
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Finally, we get the moments from Eq. B.14.

In order to get the expressions of the derivatives, we used the package Sympy in

Python.



Appendix D

Analytical expressions for the

molecular motor system

The variables to consider for the molecular motor system are the mass rates nu1,

nu2, nd1, nd2, nl, nr and the steady-state probabilities π and π′, meaning a total of

8 variables. With the following linear constraints, we can immediately reduce the

problem to 4 variables.

D.1 Linear constraints

As in the 4-state system, we impose probability conservation, mass rate conserva-

tion in the Markovian states, and mass rate conservation for the observed transitions

U and D.

D.1.1 Probabilities

From the conservation of the steady-state probability of the Markovian states

within the coarse-grained states:

π + π′ =
1

3
(D.1)
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D.1.2 Mass conservation at any Markovian state

We write the mass conservation for one of the hidden states (active or passive),

which for this system, is enough to guarantee the mass conservation for the other

hidden state:

nr + nu2 = nl + nd2 (D.2)

D.1.3 First-order mass rates

Here, we require the mass rate conservation of transitions in and out of the

coarse-grained state, providing 2 constraint equations:

nU = nu1 + nu2

nD = nd1 + nd2

(D.3)

D.2 Non-linear constraints

Since we have 2 hidden states as in the 4-state system, the results from Ap-

pendix C can be used here.

D.2.1 Second-order mass rates

We use the results for the 4-state system in Eq. C.7, together with Eq. A.2. For

nUU , we need to sum over all the mass that goes up from the passive or active state,

and then up again only to the passive state:

nUU =
nu1(pu1 + plpu2)

1− plpr
+
nu2(pu1 + plpu2)

1− plpr

=
(nu1 + nu2)(pu1 + plpu2)

1− plpr

(D.4)

For nDD, we need to sum over all the mass that goes down only from the passive
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state, and then down again to the passive or active state:

nDD =
nd1pd1 + nd2prpd1

1− plpr
+
nd1pd2 + nd2prpd2

1− plpr

=
(nd1 + nd2pr)(pd1 + pd2)

1− plpr

(D.5)

D.2.2 Conditional waiting time moments

We account for all of the transitions through a coarse-grained state i, and specify

in the following calculations the Markovian state before jumping to i, and the follow-

ing Markovian state, after state i, where i′ (i) denoted an active (passive) state. For

example, (i−1) −→ (i+1) represent two consecutive transitions, (i−1) −→ i −→ (i+1).

Note that a transition upward is only to a passive state, so the previous state

(being passive or active) in the first transition does not affect the waiting time.

Furthermore, a transition downward is only from a passive state.

From Eq. B.9:

ψ̃UU(s) =
π

π + π′

ψ̃(i−1)→(i+1)(s)

ψ̃(i−1)→(i+1)(s→ 0)

+
π

′

π + π′

ψ̃(i−1)′→(i+1)(s)

ψ̃(i−1)′→(i+1)(s→ 0)

=
ψ̃(i−1)→(i+1)(s)

ψ̃(i−1)→(i+1)(s→ 0)

(D.6a)

and similarly:

ψ̃UD(s) =

=
π

π + π′

(
ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′

)
(s)(

ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′

)
(s→ 0)

+
π

′

π + π′

(
ψ̃(i−1)′→(i−1) + ψ̃(i−1)′→(i−1)′

)
(s)(

ψ̃(i−1)′→(i−1) + ψ̃(i−1)′→(i−1)′

)
(s→ 0)

=

(
ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′

)
(s)(

ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′

)
(s→ 0)

(D.6b)
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Moreover:

ψ̃DU(s) =
ψ̃(i+1)→(i+1)(s)

ψ̃(i+1)→(i+1)(s→ 0)
(D.6c)

and:

ψ̃DD(s) =

(
ψ̃(i+1)→(i−1) + ψ̃(i+1)→(i−1)′

)
(s)(

ψ̃(i+1)→(i−1) + ψ̃(i+1)→(i−1)′

)
(s→ 0)

(D.6d)

Now we calculate all the terms in the numerators, using Eq. C.11 from the 4-state

system results:

ψ̃(i−1)→(i+1)(s) =

(
1− wlwr

(s+ λ)(s+ λ′)

)−1

(
wu1

s+ λ
+

wl

s+ λ

wu2

s+ λ′

) (D.7a)

(
ψ̃(i−1)→(i−1) + ψ̃(i−1)→(i−1)′

)
(s) =

=

(
1− wlwr

(s+ λ)(s+ λ′)

)−1(
wd1

s+ λ
+

wd2

s+ λ

)
=

(
1− wlwr

(s+ λ)(s+ λ′)

)−1
wd1 + wd2

s+ λ

(D.7b)

ψ̃(i+1)→(i+1)(s) =

=

(
1− wlwr

(s+ λ)(s+ λ′)

)−1

[
pd1

pd1 + pd2

wu1

s+ λ
+

pd2
pd1 + pd2

wr

s+ λ′

wu1

s+ λ

]
=

(
1− wlwr

(s+ λ)(s+ λ′)

)−1

1

pd1 + pd2

wu1

s+ λ

[
pd1 +

pd2wr

s+ λ′

]
(D.7c)
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(
ψ̃(i+1)→(i−1) + ψ̃(i+1)→(i−1)′

)
(s) =

=

(
1− wlwr

(s+ λ)(s+ λ′)

)−1

[
pd1

pd1 + pd2

wd1

s+ λ
+

pd2
pd1 + pd2

wr

s+ λ′

wd1

s+ λ

+
pd1

pd1 + pd2

wd2

s+ λ
+

pd2
pd1 + pd2

wr

s+ λ′

wd2

s+ λ

]
=

(
1− wlwr

(s+ λ)(s+ λ′)

)−1

[
pd1

pd1 + pd2

wd1 + wd2

s+ λ
+

pd2
pd1 + pd2

wr

s+ λ′

wd1 + wd2

s+ λ

]
=

(
1− wlwr

(s+ λ)(s+ λ′)

)−1

1

pd1 + pd2

wd1 + wd2

s+ λ

[
pd1 +

pd2wr

s+ λ′

]

(D.7d)

All of the denominators from Eq. D.6 can be calculated by setting s → 0 in

Eq. D.7. Finally, we get the moments from equation Eq. B.14.

In order to get the expressions of the derivatives, we used the package Sympy in

Python.



Appendix E

Larger systems

We apply our method to a system with 5 states, 3 of which are Markovian, and

the other 2 are coarse-grained to a single state H (Fig. E.1(a)), for different values

of an external force F used to tune the transition rates over the observed link 1− 2

according to w12(F ) = w12e
−βFL and w21(F ) = w21e

βFL. Comparing the results

of our method to other bounds (Fig. E.1(b)), σ
(1)
opt outperforms σKLD and σ2, and

trivially σaff.
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(a)

(b)

5 4

1 3

𝐻

2

𝐻

1 3

2

Figure E.1: 5-state system with four observed states. (a) Illustration of the full

system topology, including the coarse-graining of states 4 and 5 to state H. (b)

Total EPR σtot (black line), our bound σ
(1)
opt (red cross), KLD estimator σKLD (blue

downward-pointing triangle), affinity estimator σaff (green upward-pointing

triangle) and two-step estimator σ2 (yellow Asterisk). The rates used are

w12 = 11 s−1, w13 = 0 s−1, w14 = 71 s−1, w15 = 81 s−1, w21 = 31 s−1, w23 = 0 s−1,

w24 = 12 s−1, w21 = 96 s−1, w31 = 0 s−1, w32 = 0 s−1, w34 = 92 s−1, w35 = 12 s−1,

w41 = 69 s−1, w42 = 15 s−1, w43 = 14 s−1, w45 = 91 s−1, w51 = 100 s−1,

w52 = 71 s−1, w53 = 29 s−1, w54 = 30 s−1.



Appendix F

Comparing estimators when

optimizing for a simple model

We apply our method to a system with 5 states, 2 of which are Markovian, and

the other 3 are coarse-grained to a single state H. In order to solve for a case

where one does not have information about the underlying topology, we assume the

simplest topology, with only 2 internal states (Fig. F.1a), and write the optimization

problem accordingly. Using our approach, not only do we get a lower bound on the

total EPR, but also our estimator σ
(1)
opt outperforms the other estimators.
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(a)

(b)

4 3

1 2

𝐻 5

4 3

1 2

𝐻

Figure F.1: Comparison to other bounds when assuming a simple topology. (a)

Illustration of the full 5-state system topology, including the coarse-graining of

states 3, 4, and 5 to state H (left) and the full-system topology we assume (right).

(b) Total EPR σtot (solid black line), our bound σ
(1)
opt (red cross), KLD estimator

σKLD (green upward-pointing triangle) and two-step estimator σ2 (blue circle). The

results are presented for randomly generated transition rates with statistics

calculated from trajectories of length N = 108. Values of the estimators with the

same σtot correspond to the same system, showing that σ
(1)
opt outperforms both

σKLD and σ2.
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תקציר

אנטרופיה. ומייצרים בזמן להיפוך סימטרייה שוברים משקל לשיווי מחוץ תהליכים

מולקולריים מנועים של המיקרוסקופית ברמה משקל משיווי רחוק פועלות חיות מערכות

מכנית לעבודה חופשית אנרגיה להמיר בכדי כימי פוטנציאל של גרדיאנטים המנצלים

האנטרופיה ייצור קצב לחלופין או שמתפזרת האנרגיה כמות אנרגיה. בפיזור המלווה

ייצור קצב בחישוב קושי יש בפועל, תאיים. תהליכים על תרמודינמיות הגבלות מציב

של מלא במידע מחוסר או ומרחבית זמנית ברזולוציה ממגבלות הנובע האנטרופיה

תחתון חסם לקבלת חדשה גישה מציע אני זאת, בעבודה החופש. מדרגות חלק

פתרון על המתבסס חלקי, מידע בהינתן המלא באנטרופיה השינוי קצב על הדוק

וזמני מעברים של המידע על בסטטיסטיקות המשתמשת אופטימיזציה בעיית של

מעברים על המתסמכים חסמים של היררכיה מציג אני לעין. הנראים המתנה

שלי הגישה את ובודק המתנה, זמני התפלגויות של מומנטים ועל ושני ראשון מסדר

לבסוף, מקובצים. מצבים עם מולקולרי ומנוע חבויה רשת כלליות, מערכות שתי על

שלי הגישה בעזרת באנטרופיה השינוי לקצב תחתון חסם להשיג שאפשר מראה אני

פשוטה. טופולוגיה בעלת היא המלאה שהמערכת מניחים כאשר
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