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Abstract 

Single-walled carbon nanotubes (SWCNTs) have unique optical, chemical, and physical 

properties, and are high aspect-ratio nanoparticles being 1-2 nm in diameter and up to 

several micrometers in length. SWCNTs can be utilized in numerous biomedical imaging 

and sensing applications, owing to their near-infrared (nIR) fluorescence between 900 – 

1400 nm, which overlaps with the biological transparency window. However, in addition 

to their nanometric nature which is smaller than the common camera’s resolution size 

(0.7-13 μm), their longer emission wavelengths compared to fluorescent emitters in the 

visible range result in a lower resolution due to the diffraction limit. Hence, super-

resolution (SR) techniques which enhance our understanding of precise structural features 

and dynamic behaviors at the nano-scale, are necessary in order to fully exploit SWCNTs 

as optical probes for both spatial and temporal information and to fathom biological 

environments. Nonetheless, super-resolving fluorescence images of SWCNT in the nIR 

presents several challenges. First, SWCNTs are not point-emitters and can have turns, 

twists, and loops, impeding geometry-based SR techniques. Moreover, the SWCNT 

suspensions are heterogeneous in nature, having a wide length distribution and multiple 

chiralities, each of which fluoresce in a different wavelength. Finally, the longer 

wavelengths of the fluorescence, compared to common fluorophores in the visible range, 

further limits the resolution due to the diffraction barrier.  

This work demonstrates the use of deep learning in general, and convolutional neural 

networks (CNNs) specifically, for achieving high-resolution images of SWCNTs in the 

nIR spectral range. Utilizing the advantages of state-of-the-art deep learning and CNNs 

we obtain high-resolution images for a variety of SWCNT densities and length 
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distributions, and a wide range of imaging conditions with challenging signal-to-noise 

ratios (SNRs). This essay shows, for the first time, a robust SR approach that requires no 

manual parameter tuning nor special equipment. Moreover, our approach does not require 

stochastic, blinking, or photo-switchable fluorophores, in contrast to other SR single-

molecule localization microscopy methods such as stochastic optical reconstruction 

microscopy (STORM) or photoactivated localization microscopy (PALM).  

We train an encoder-decoder architecture network, using super-resolution radial 

fluctuations (SRRF) analytical approach as our desired ground truth. We validate our 

CNN and show a notable improvement, on average, of 22% in the resolution and 47% in 

SNR compared to the original images for a broad range of SWCNTs shapes, lengths, and 

densities, whereas SRRF leads to only 24% SNR improvement. Further, we demonstrate 

real-time super-resolution of SWCNT videos without compromising the temporal 

resolution of the original sequence of frames. This work provides a significant milestone 

in the field of super-resolution (SR) microscopy  using deep learning techniques to 

achieve an ultra-fast, parameter-free algorithm for super-resolving images of non-

spherical emitters in the near-infrared at large, and of SWCNTs in particular, further 

advancing their applicability as optical probes at the nanoscale. 
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1. Introduction 

Single-walled carbon nanotubes (SWCNTs), visualized as a one-dimensional cylinder of 

a rolled-up sheet of carbon atoms arranged in a honeycomb lattice, find numerous 

biomedical applications including imaging and sensing in the nIR.[1,2,11,3–10] For sensing, 

functionalized SWCNTs can bind specific analytes such as proteins, small molecules, 

metal-ions, or bacteria, and exhibit fluorescence modulations upon interaction, whereas 

for imaging, they can be easily tracked in complex biological environment owing to their 

near Infra-Red (nIR) fluorescence in the range of 900-1600 nm.[12,13,22–24,14–21]  

In order to fully exploit SWCNTs as optical probes for both spatial and temporal 

information, the nanotubes should be individually imaged, tracked, and resolved.[25–28] By 

doing so we can bridge the gap between cellular observations and molecular structure 

knowledge.  

However, the diffraction of the long nIR wavelengths SWCNTs emits limits the 

resolution, creating an additional challenge compared to the visible range, when 

attempting to observe internal structures. Specifically, SWCNTs fluorescence emission 

occurs primarily between 900–1600 nm[29] resulting in a diffraction limit of ~450-800 nm 

whereas for commonly used dyes the resolution limit is in the range of 250-300 nm.[30]  

Therefore, there is a growing need for improving the spatial resolution of fluorescence 

images of SWCNTs in the nIR in order to fully utilize their optical properties and 

fluorescence emission in the biological transparency window for imaging, tracking, and 

sensing.[19,20,31] Nonetheless, most of nowadays super-resolution microscopy techniques 

are depended on specific imaging equipment, long processing time, or can resolve only 

geometrically-homogeneous sensors.  
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In this thesis, I have developed a machine learning algorithmic approach for super-

resolution of SWCNTs in the nIR range. I have demonstrated my approach on nIR 

fluorescence images of SWCNT samples with various length distributions and densities 

(hence, proving it to be independent on the markers geometrical-homogeneity), as well 

as complex image conditions [e.g., bright background with low signal to noise ratio 

(SNR), and closely located SWCNT with overlapping point-spread functions (PSFs)] and 

real-time movies of diffusing SWCNTs, and showed an average full-width-half-max 

(FWHM) improvement of 22.4% compared to the original LR images.[32] To do so, I first 

synthesized heterogeneous samples of short and long nanotubes by tuning sonication 

times (Figure 1a), and imaged immobilized SWCNTs in total internal reflection 

fluorescence (TIRF) mode to optimize the SNR (Figure 1b). Then, I addressed the 

aforementioned challenge of the diffraction limit in the nIR range, and counter the need 

for an ultrafast, parameter-free algorithm for precise localization and super-resolution of 

SWCNT images by harnessing the advantages of a convolutional neural network (CNN) 

(Figure 1c). Utilizing basic augmentation operators, I expanded the data set of TIRF low-

resolution (LR) images by a factor of almost 10, from which I obtained a labeled data set 

of high-resolution (HR) images, by implementing an existing super-resolution algorithm, 

as our ground truth (GT) HR images. The LR and HR data sets are used as a part of the 

supervised learning process of the CNN. My results extend the applicability of SWCNTs 

as optical probes for imaging in complex and heterogeneous biological samples, and open 

new avenues for super-resolution microscopy in the near-infrared range. 
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Figure 1. Schematic representation of the working protocol. a) SWCNTs suspension with SDBS using varying sonication 

times for producing different length distributions of nanotubes, with representative fluorescent images of SWCNTs 

lengths. Scale bar stands for 5 μm. b) SWCNT immobilization on poly-L-lysine-coverslip for TIRF imaging in the nIR 

wavelength range. c) Encoder-decoder convolutional neural network (CNN) representation for high-resolution images 

of SWCNTs. Created with BioRender.com. 
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2. Theoretical background 

2.1. Single walled-carbon nanotubes 

2.1.1. Structure and properties 

Carbon nanotubes are rolled up cylinders of graphene sheets (Figure 2a) composed of 

sp2- hybridized carbon atoms.[1,20] With an inner diameter of 1-2 nanometers, and length 

of 300 nm – 10 μm,[1,29,33] SWCNTs have unique physical,[34,35] chemical,[36,37] 

mechanical,[38] and electronic properties.[39] Both the SWCNT's chemical and physical 

properties are structure-dependent, as there are many different angle to roll-up the 

SWCNTs which leads to a variety of SWCNTs structures. The angle values can be 

described using two integer values (Figure 2b) – 𝑎1 and 𝑎2, which denotes the lattice 

basic vectors of the graphene layer. Hence the SWCNT's angle at which it can be rolled 

up can be described by a vector which is a linear combination of the two: 

 

𝑐 = 𝑛𝑎1 + 𝑚𝑎2    (1) 

 

The different geometries are described by the (n,m) index and are known as the SWCNTs 

chirality. The (n,m) index is related to diameter of the SWCNT: 

 

𝑑 =
|𝑐|

𝜋
=

𝑎0

𝜋
√𝑛2 + 𝑛𝑚 + 𝑚2    (2) 

 

Where 𝑎0 is the graphene lattice constant (0.246 nm).  

The (n,m) values also describe whether SWCNTs exhibit metallic, semimetallic or 

semiconducting properties. The density of electronic states, as well as the band gap 

between the conduction and valence band are related to these properties and determine 

whether a SWCNT is fluorescent.[1]  Due to the electronic band-gap between valence and 

conduction band semiconducting SWCNTs are fluorescent in the nIR.[40] Transitions 

from the conduction to the valence band lead to fluorescence, where the 𝐸22 transitions 

lead to absorption (v2 → c2) and the 𝐸11 transition to the fluorescence emission (c1 → 

v1) (Figure 2c)[40]  
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Figure 2. SWCNT's structural properties. a) Illustration of SWCNTs consist of a graphene sheet rolled up to form a 

cylinder. b) The roll up vector c is defined as 𝑐 =  𝑛𝑎1  +  𝑚𝑎2. SWCNT are generated by rolling up the graphene 

sheet along this vector and superimposing the first and the last carbon atom. An example (green) for the (7, 3) SWCNT 

is given where 𝑐 =  7𝑎1  +  3𝑎2. c) Density of electronic states of a semiconducting SWCNT. 

Unfunctionalized SWCNTs consider to be hydrophobic[20] and tend to form bundles due 

to strong van der Waals forces. Functionalizing SWCNTs with amphiphilic molecules or 

polymers, which is possible owing to the material's high surface area,[29] can form a 

colloidal suspension of individually dispersed SWCNTs.[29,41] 

 

2.1.2. SWCNTs as imaging probes 

The unique optical and electronic properties of SWCNTs make them favorable as 

fluorescent sensors for biomedical applications, in particular due to the SWCNTs 

fluorescence emission in the nIR range (900-1600 nm) which does not photobleach nor 

blink.[30,42,43] Generally, when super resolving structures within biological tissue, imaging 

in the nIR with an emission wavelength of λ>900 nm, is favorable due to the “optical 

transparency window” where light scattering is suppressed, and imaging penetration 

depth is maximized.[44,45] Moreover, given proper functionalization SWCNTs are highly 
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bio-compatible,[46,47] making them biocompatible probes in the biological transparency 

window range, where commonly imaging relies on nanoparticle probes containing toxic 

elements.[48,49] As so, SWCNTs have already were successfully utilized as imaging and 

sensing probes in various applications such as within plants,[10,50–52] live cells,[53–57] whole 

animals,[19,42,58–60] and brain tissue,[61,62] for example the brain extracellular space 

(ECS).[63] Beside than extracting information on a biological environment, imaging and 

monitoring moving SWCNTs in fluids[12,13] or gels[14] as well as fixed samples[15–18] can 

be beneficial for applied science and for our understanding of SWCNTs dynamics.  

Yet, imaging the SWCNTs fluorescence in the nIR gives rise to a major challenge as the 

longer emission wavelengths > 900 nm, result in a lower resolution due to the diffraction 

limit, compared to imaging with shorter emission wavelengths in the visible range using 

common fluorescence dyes,[30] compromising the resolution of the taken image. Another 

challenge attached to SWCNT imaging, is the heterogeneity of SWCNT samples both in 

their shape-geometry, stemming from synthesis and suspension procedures which result 

in a wide distribution of SWCNTs lengths,[64–66] and in emission wavelengths, originate 

from the material properties. Those heterogeneous properties hinder the ability to 

individually resolve SWCNTs as imaging probes using both standard imaging methods 

or super-resolution techniques alike.  

 

2.2. Super-resolution microscopy methods 

Fluorescence microscopy is a widely-applied and invaluable tool for monitoring sub-

cellular biological processes in real-time,[67–69] yet its spatial resolution is limited, 

according to Abbe’s diffraction theory,[70,71] by approximately half the wavelength of 

light. Imaging in the nIR range with longer wavelengths than the visible light further 

exacerbates this issue. Still, favorable for biomedical imaging, the nIR range overlaps 
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with the biological transparency window,[72–74] enabling numerous biomedical 

applications such as sensing and imaging within deep tissue and cell-culture samples with 

minimal auto-fluorescence, absorption, and scattering interferences.[44,45,75] In standard 

fluorescence microscopy, both the quality and resolution of the images are predominantly 

limited by the optics, the photophysics of molecular emitters, and the sensor technology, 

posing a challenge for obtaining high-resolution images. Utilizing image reconstruction 

methodologies in fluorescence microscopy to solve deconvolution or super-resolution 

problems can improve the resolution, and also offer solutions to additional problems such 

as image denoising, registration, stitching, and fusion.[76–78] In deconvolution, for instance, 

a precise understanding of the optical system's properties (e.g. the PSF or the system's 

numerical aperture) and the characterization of the accompanying noise are required. 

Such classical methodologies have led, among others, to the design of popular algorithms 

such as Richardson–Lucy deconvolution,[79,80] which requires knowledge of the PSF of 

the microscope and assumes Poisson noise statistics. Without such prior knowledge, data-

driven or data-based methods may be more broadly applicable to solve image 

reconstruction problems.[81] Super-resolution algorithms achieve their goal by localizing 

a sparse set of emitting fluorophores in single or multiple frames, through stochastic, 

analytical, or mathematical approaches. Some super-resolution methods are considered 

localization algorithms that provide a table of localized positions of the emitters, whereas 

other methods provide a super-resolved image without localization.[82,83] In the past years, 

many super-resolution microscopy methods have been developed[28] to overcome the 

diffraction limit and to enable observations of features at a nanometric scale[84] by 

utilizing photo-controlled emission of fluorescent molecules.[85] Camera-based super-

resolution approaches[86] such as single-molecule localization microscopy (SMLM)[84] 

methods, namely, photo-activated localization microscopy (PALM),[87,88] stochastic 
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optical reconstruction microscopy (STORM),[89,90] and points accumulation for imaging 

in nanoscale topography (PAINT),[91] rely on acquiring a sequence of diffraction-limited 

images of a sparse set of blinking fluorophores by either molecular collisions or local 

chemical environment. By localizing the emitting fluorophores with high precision based 

on their PSFs frame-wise, and combining the emitter positions from all the frames, a 

single super-resolved image is procured. A similar SMLM strategy was demonstrated 

using SWCNTs functionalized with photo-switchable molecules, such that ultraviolet 

(UV) light illumination resulted in blinking of the SWCNT fluorescence by modulating 

the charge transfer to the nanotubes.[92] In these approaches standard equipment such as 

a wide-field microscope, a sensitive camera and continuous-wave lasers for excitation 

and activation are used,[93] however, a set of frames and a stochastically blinking 

fluorophores are necessary to achieve one single HR image.  

In contrast, illumination pattern-based approaches which do not rely on the use of specific 

blinking emitters, grant the ability to extract nanoscale structures by mathematical 

reconstruction as a second stage for frequency shifted illumination[94,95]. Yet, those 

methods, such as structured illumination microscopy (SIM),[95] stimulated emission 

depletion (STED)[96] and reversible saturable/switchable optical linear fluorescence 

transitions (RESOLFT),[97] may often require specialized optical components.[86] 

Analytical super-resolution microscopy methods on the other hand, offer an instrumental 

simplicity, such as super-resolution optical fluctuation imaging (SOFI),[98] and super-

resolution radial fluctuation (SRRF).[86,99] 

Super-resolution microscopy push the boundaries of resolving nanometric structures and 

dynamics, and can shed light on complex biological structures in the microscale utilizing 

imaging probes[100] and single particle tracking (SPT).[14,101] This method, (i.e., SPT) 

which has been used to unfold dynamic information in many systems such as crystalline 
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hosts,[102] catalytic conversions,[103] and heterogeneous biological 

architectures,[26,27,104,105] is achieved by resolving frame by frame video recordings of 

single-particle diffusion to reconstruct the particle trajectory.[106,107] A notable advantage 

of SWCNTs is that they can be used to generate HR data of various complex 

environments in the nIR range, rendering them favorable imaging probes for HR bio-

imaging.[28] 

 

2.3. Super-resolution radial fluctuations 

Super-resolution radial fluctuation (SRRF), is a recent developed analytical approach for 

super-resolution microscopy, that eliminates the need for specialized optical components, 

or fluorophore detection and localization,[86] and can be performed on standard wide field 

or TIRF microscope[86] imaging setups. 

For a given sequence of images SRRF magnifies each pixel into subpixels, and calculates 

a  “radiality” value based on the local symmetry resulting from the microscope PSF, 

yielding a “radiality stack”.[99] For each subpixel the radiality value relates to the 

probability of it containing the center of a fluorophore.[86,99] Temporal correlations within 

the radiality stack are then used to create the final SRRF image.[86,99] The radiality stack 

created by SRRF preserves information in the gradient field which would be discarded 

by other localization techniques.[86] As such the radiality map on its own can already 

improve the resolution prior to the temporal analysis as we have demonstrated by 

applying SRRF to a single frame of a SWCNT in prior research done in our lab.[108] SRRF 

has been used for imaging cellular processes,[99,109–117] distinguishing DNA base-pair 

distance,[12] calcium imaging,[118] ultrasound microvascular imaging,[119] and traction 

force microscopy,[120] proving to be highly successful and widely used. Recently, SRRF 

has been usefully applied to nIR fluorescence images and videos of SWCNTs.[108]  
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2.4. Convolutional neural networks 

Another highly promising paradigm in the field of image processing and computer vision 

in recent years is machine learning,[121–125] with CNNs[121,126–133] spearheading the 

advancements, showing impressive results in a variety of applications such as single-

image resolution enhancement[134–137] and segmentation.[138,139]  

CNN consists of input and output layers, as well as several hidden layers. The hidden part 

of CNN consists of a convolutional layer (i.e. 2 or 3-dimentional convolution is performed 

on the input data matrix using a moving kernel), pooling layer, and a fully connected 

classifier, which is a perceptron that processes the features obtained on the previous layers. 

Consider the part of CNN, which is responsible for the selection of features, and consists 

of a spatial convolution layer and a pooling layer that implements the max pooling 

operation.[140] Suppose that the image I consisting of R rows, C columns and D color 

channels is the input of CNN (e.g. RGB images have a D = 3 while greyscale images have 

D = 1). The CNN input can be described as a three-dimensional function I (x, y, z) in this 

case, where 0 ≤ x < R, 0 ≤ y < C and 0 ≤ z < D are the spatial coordinates, and the amplitude 

I at any point with coordinates (x, y, z) is the intensity of the pixels at that point. Procedure 

for obtaining characteristics in arrays convolutional layer can be represented as  

 

𝐼𝑓(𝑥, 𝑦) = 𝑏 + ∑ ∑ ∑ 𝑊𝑖,𝑗,𝑘 ∙ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑘)𝐷−1
𝑘=0

𝑡
𝑗=−𝑡

𝑡
𝑖=−𝑡    (3) 

 

Where: 𝐼𝑓  is the predicted matrix (feature map), 𝑊𝑖,𝑗,𝑘  is a 𝑤 × 𝑤 × 𝐷  kernel for 

processing D 2-dimentional arrays, b is an offset parameter[141] and 𝑡 =
𝑤−1

2
. CNN usually 

uses a large number of filters in the convolutional layer which leads to a sharp increase 
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in the amount of data processed in the network. The pooling layer of max pooling in some 

considered neighborhood is used to reduce them.[142] Figure 3 schematically shows a 

convolutional process of yielding a feature map and a max pooling operation using a filter 

mask of size 𝑤 × 𝑤 and stride 𝑤. 

 

Figure 3. Representative principles of CNN layers. a) Represention of obtainment of feature maps post-convolutional 

layer. b) Max-pooling layer principle representation. 

However, the CNN in this work lacks the fully connected classifier as the goal-output is 

a new image matrix, therefore a fully-convolutional-network (FCN) design was embraced. 

The most widely employed CNNs architectures for image segmentation are variants of 

so-called ‘‘encoder–decoder networks’’ proposed initially for unsupervised feature 

learning.[143] These encoder–decoder networks can obtain lower-level spatial resolution 

features together with a deep perception of the image (semantic recognition) via down-

sampling.[144] They can also obtain higher-level spatial resolution features for highly 

accurate recovery of the image via upsampling which is in favor of a key assumption in 

super resolving images that states that high-frequency data is redundant as it can be 

accurately reconstructed from low frequency components. The general semantic 

segmentation task is to partition an image into a set of coherent regions that are connected 

and non-overlapping, and that enable homogeneous pixels to be clustered together.[145] A 

FCN is an end-to-end image segmentation method[138] modified through replacing the 

fully connected layer in a classification network by a transposed convolutional-layer[144] 
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but can easily transform its task to super-resolving images due to the similarity in pre-

mentioned assumptions and capabilities of the FCN. 

CNN-based approaches benefit from short computation times and do not require sample-

dependent parameter tuning, in contrast to other super-resolution analytical methods, and 

hence can be used as a robust super-resolution methodology for real-time measurements 

under different samples properties.  
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3. Research objectives 

As explained in the introduction, this work aims to embed the use of deep learning 

techniques for super-resolution method on individually dispersed SWCNTs imaged using 

a microscope setup with TIRF-illumination in the nIR range, and to offer an accessible, 

user-friendly, super-resolution algorithm. 

First and foremost, the main motivation for this work is to enable a more accurate sub-

diffraction spatiotemporal visualization of SWCNT, in order to advance the 

understanding of SWCNT’s performances under various biological environments, and 

thus eventually to support various developments of SWCNTs as sensing and imaging 

probes. Nonetheless, the motivations behind implementing specifically a deep-learning 

based super-resolution algorithm in the nIR can be separated into two main aspects: the 

imaged materiel aspect, and method's restrictions aspect.  

On the one hand, the growing potential of SWCNT to act as a bio-sensor increasing the 

need for super resolving images taken within complex biological samples in order to 

enhance the understanding of SWCNT's dynamics in different environments. Yet, minor 

changes in the imaging setup or the imaged sample can lead to a wide variety of complex 

imaging condition and the imaged SWCNT's properties. Therefore, the first goal was to 

develop a robust technique to resolve diverse lengths, densities and shapes (circular dots, 

short straight lines and long curvy lines) of the SWCNT suspensions. 

Next milestone was to tackle the limitations of nowadays super-resolution methods. As 

explained in the theoretical background chapter, all existing algorithms would either 

require a set of multiple images to yield one resolved frame (impairing temporal 

resolution), a sample-dependent parameter tuning, specialized illumination imaging setup, 

or would take up long processing time. Accordingly, by utilizing deep-learning virtues 



14 

 

we aimed our method to address these challenges by eliminating the need for special 

imaging components, establishing a parameter-free method, and offering a real time 

algorithm for single frames. 

We believe that with its simplicity and robustness, our network will aid in paving the path 

to sub-diffraction super-resolved images in the nIR, offering a better understanding of 

SWCNT-based structures at the nanoscale level and help in designing biocompatible 

sensors. 

4. Methods 

4.1. SWCNT suspension 

1 mg mL-1 HiPCO Single-walled carbon nanotubes (SWCNTs, Nanolntegris) was 

suspended in 4 wt% sodium dodecylbenzene sulfonate (SDBS) (Sigma-Aldrich), by a 

direct tip sonication (8W for 5-20 seconds, QSonica Q125). Different sonication times 

were applied to yield varying SWCNT lengths (Figure 1a). Afterwards, the suspension 

was centrifuged twice (90 minutes, 16100 RCF, 25°C, Eppendorf) to separate 

individually suspended SWCNT from aggregates and impurities. The top 80% of the 

supernatant was extracted after each centrifugation step and the pellet discarded.  

 

4.2. SDBS-SWCNT characterization 

The absorption spectrum of the SDBS-SWCNT suspension was measured using an 

ultraviolet-visible-nIR (UV-Vis-nIR) spectrophotometer (Shimadzu UV-3600 PLUS). 

The excitation-emission map of the SDBS-SWCNT suspension acquired with the use of 

a nIR microscope coupled to an InGaAs detector, utilizing a spectrograph (PyLoN-IR 

1024-1.7 and HRS-300SS, Princeton Instruments, Teledyne Technologies). A super-
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continuum white-light laser (NKT-photonics, Super-K Extreme) coupled to a tunable 

bandpass filter (NKT-photonics, Super-K varia, Δλ = 20 nm) was used for excitation.  

 

4.3. SWCNT immobilization 

Microscope coverslips of 18 mm in diameter were immersed in 0.1% poly-L-lysine (PLL, 

Sigma-Aldrich) solution for 5 minutes, and rinsed with ethanol and water. 150 μl of 0.8 

mg L-1 SDBS-SWCNT suspension was dropped on a laboratory film (Parafilm, Bemis, 

USA), on top of which the PLL-coverslip was placed for 5 minutes and rinsed again with 

water only. Subsequently, the PLL-coverslips with the immobilized SWCNTs were 

sealed using standard nail polish and placed on top of an imaging glass slide (Figure 1b). 

 

4.4. nIR fluorescence imaging 

Total internal reflection fluorescence (TIRF) microscopy imaging was done using an 

inverted fluorescence microscope (Olympus IX83) with a 100X TIRF objective 

(Olympus UAPON 100XOTIRF). SWCNT suspensions were excited by a 730 nm CW 

laser (MDL-MD-730-1.5W, Changchun New Industries) through a 900 nm long-pass 

dichroic mirror (Chroma, ET900lp). The near-infrared fluorescence emission was 

detected after a 900 nm long-pass emission filter (Chroma, ET900lp) using an InGaAs-

camera (Raptor, Ninox 640 VIS-nIR) with a digital gain of 6 dB. For immobilized 

SWCNTs at varying densities, 100 frames were acquired in TIRF mode at 10 frames per 

second (fps) frame rate and 80-100 msec exposure time. In order to verify the network 

robustness to images with a variety of background intensities and SNRs, multiple neutral 

density (ND) filters were used in the range of ND02-ND10. All images (total of 129) 

were of size 640×512 pixels. 
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4.5. Visible-wavelength range fluorescence imaging 

Visible-wavelength range fluorescence images were taken with the same setup as used 

for the nIR imaging, with one modification of the dichroic mirror that directs the 

fluorescence emission light to the relevant camera, an EMCCD in this case. The same 

microscope and objective were used. Likewise, SWCNT suspensions were excited by a 

730 nm CW laser (MDL-MD-730-1.5W, Changchun New Industries). To detect the 

SWCNTs fluorescence emission using the EMCCD camera (Andor, iXon Ultra 888), the 

900 nm long-pass dichroic mirror, used to reflect the >900 nm emission to the nIR camera 

and <900 nm to the visible camera, was replaced with an 1100 nm long-pass dichroic 

mirror (Chroma, CT1100LPXRXT), directing the emitted light up to 1100 nm to the 

visible EMCCD camera. The images were taken with an exposure time of 100 msec and 

a digital gain of 1 dB. The same sample was imaged in both cameras (visible and nIR) by 

switching the 900 nm and 1100 nm long-pass dichroic mirrors. The EMCCD images of 

size 1024×1024 were first aligned with their corresponding images taken with the nIR 

camera using MATLAB 2020a.[146] The aligned imaged of the EMCCD and InGaAs 

cameras, 742×594 pixels in size, were then cropped to cubic 512×512 size images and 

could be overlaid (Figure 4). 
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Figure 4. Andor (visible range) and Raptor (nIR range) image registration. a) From left to right: initial Andor camera 

image (1024×1024 pixels), and its corresponding Raptor camera image (640×512 pixels). b) From left to right: 

correlated and cropped Andor camera image (512×512 pixels), its corresponding correlated and cropped Raptor 

camera image (512×512 pixels) and an overlay image of both. Scale bar stands for 10 μm in all images. Yellow arrows 

indicated corresponding SWCNTs in both cameras. 

 

4.6. SRRF analysis 

Initial preprocessing of the images included a single pixel radius median filter to de-

speckle the images, and a rolling ball algorithm (radius 50) to remove the background 

using ImageJ.[147][86] Then, high-resolution images were obtained using a Super-

Resolution radial Fluctuations (SRRF) algorithm[86,108,117] using a ring radius of 0.5, 

radiality magnification of 4, and 6 axes in the ring. SRRF temporal analysis was done 

using a temporal radiality average (TRA), and an intensity weighting was preformed to 

enhanced radiality peaks.[86] Since the SRRF output images were used as the data labels, 

background removal (radius 50) and contrast enhancement (various factor of 0.01-0.1%) 
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were applied in ImageJ[147][86] to improve the images quality (See Figure 5a for visual 

representation). The background removal and contrast enhancement were preformed 

manually on each SRRF image to achieve the best quality output considering the input 

image properties such as SWCNTs density, image brightness, and number of frames, 

which directly affected the SRRF results. The preparation process of the labeled data is 

described in Figure 5a. 

 

 

Figure 5. Original data set preparation. a) Preparation of the HR labels. All images went through the same steps of de-

noising, background removal, and SRRF algorithm, then manually tuned using background removal and contrast 

enhancement to yield optimal results. Scale bar is 10 μm . b) Image classification according to densities using 

histogram thresholding over summed pixel value of binary images. 
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4.7. Images density classification 

Following the formation of the initial data sets, the images were classified by their 

SWCNTs visible density. At first, the images went through binarization (i.e., notable 

SWCNT were labeled as 1, background as 0), using a grey-scale threshold value that was 

calculated using Otsu’s method[148] and was iteratively and manually tuned to produce 

optimally binarized images. Subsequently, the number of pixels per image was summed, 

and using the Otsu’s method, a separation threshold was extracted and constituted the 

pixel sum threshold representing the image density (Figure 5b). Threshold was set to be 

an SBR value of 0.257% (marked in orange in Figure 5b). All images with summed pixels 

value lower than the threshold were categorized as low-density images, whereas the rest 

were categorized as high-density images. Final data set sizes are described in Table 1. 

Out of the total 129 images, 108 were classified as low-density images and the rest as 

high density, resulting in an initial density ratio of 0.19. Images density classification was 

performed on the SRRF HR output images considering their better contrast, as it 

simplified the threshold finding process. The same predicted classification was assigned 

to the labeled image as well as the corresponding LR raw image. 

 

Table 1. Data set sizes of the different densities 

Data set Low density High Density Total 

Initial pre-augmentation 108 21 129 

Post-augmentation 944 248 1,192 

   Training 869 223 1,092 

   Validation 75 25 100 

Test 17 5 22 
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4.8. Data augmentation 

Since different cameras produce images with different resolutions and aspect ratios, we 

chose a square size of 512×512 pixels as the input image dimensions. One advantage of 

this self-imposed restriction is the ability to utilize each raw image more than once by 

cropping different portions to yield a square image, thus augmenting our dataset. Raw 

images that contained a considerable number of SWCNTs in the lateral regions of the 

frame were cropped twice, once for the left side square and once for the right side. On the 

other hand, images with sparse information, mostly centered, were cropped only once to 

maximize the number of SWCNTs in the cropped frame. This method increased our data 

set by a factor of 1.1-1.2 to a total amount of 149 images. After manual cropping 

according to the spatial data distribution in each image, all of the images were augmented 

by using 90 degrees rotations and a horizontal flip (Figure 6), increasing our data set by 

a factor of 8. By doing so, we managed to increase our 129 initial images to a final data 

set to 1192 images, with a density ratio of 0.26 of high vs low densities. Eventually, out 

of the final training dataset of 1192 images, 1092 (91.6%) images were used strictly for 

training, whereas the remaining 100 (8.4%) images were used for validation (Table 1). 

Network performances were tested on a new test data set of 22 new images with various 

SWCNTs densities and lengths, which were not included in the initial training and 

validation database.  All augmentation methods were applied on both the raw and labeled 

images, implemented with MATLAB 2020a.[146] 
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Figure 6. Image augmentation for enlarging the data set. Scale bar is 10 μm. 

4.9. Data-sets preparation 

The post augmentation data set consisted of 1192 matching pairs of LR and SRRF-HR 

grey scaled images. The final data set was divided to train and validation sets with the 

ratio of 9:1 respectively. Through this separation, the 0.26 ratio between high to low 

density images was maintained (Figure 5b). All pixel values of the input images were 

normalized to the range between 0 to 1. Network performances were tested on a test data 

set of 22 images with various SWCNTs densities and lengths. 

   

4.10. Architecture and loss 

Inspired by previous works such as Deep-STORM super-resolution-microscopy 

network[83] and based on U-NET encoding-decoding structure,[138,139] our network first 

encodes the spatial representation of the image features, through a monotonic 

logarithmic-scale decrease in image size and an increasing depth, and then decodes the 

same data by a reverse expansion section (Figure 7). The network first goes through 4 

encoding blocks of the same structure – a 2D-convolution with 3×3 filter applied, 

followed by a non-linear ReLu function[149] and a 2×2 max-pooling layer. 
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A bottle-neck block with a similar structure, i.e., a 2D-convolution with 3×3 filter 

followed by a ReLu function, connects the encoder and the decoder sections. The decoder 

is also built with a repetitive structure of 6 decoding blocks. The first 4 decoder blocks 

consist of a 2×2 up-sampling layer, followed by an element-wise-sum residual layer[150] 

using skip connection[151] to the symmetrically matching encoder layer. Then, two 

successive processes of 3 × 3 2D convolution, and non-linear ReLu activation are 

performed. Owing to different resolution and sizes of the input images compared to the 

output images, two more decoding blocks are required, lacking the residual sum layers. 

The network final layer of a pixelwise prediction is performed by a single 1×1 filter 2D-

convolution layer. Since a pixel-wise value prediction is required for the network output, 

a regression approach was adapted by minimizing the mean-squared-error (MSE) 

between the recovered HR image and the ground truth, and a weighted 𝑙1 penalizer was 

added to promote the sparsity of the network output. The network implementation was 

done using Keras[152] with a TensorFlow[153] backend. 

 

 

Figure 7. Network architecture, based on U-NET with two additional layers. Layer sizes noted below each block. 

Arrows mark skip connections between layers. 
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4.11. Network Optimization 

Our network was optimized by two stages of parameters grid search. First, we focused on 

major architectural decisions, such as the hidden layers depth, convolution kernels size, 

and the use of batch normalization.[154] Second, we optimized the network hyper-

parameters, including the batch-size, number of epochs, activation functions, kernel 

weights initializer, drop-out percentage coefficient, and the weight 𝜆 of the 𝑙1 penalizer 

in the loss function. 

4.11.1.  Network architectural-parameters optimization 

Our network was optimized by refining its architectural structure and parameters. 

Comparing a 9-layer network to 11- and 13-layer networks, we found that the deeper 

architectures resulted in better performance. Since the two extra layers in the 13-layer 

network provided no substantial improvement over the 11-layer network, the latter was 

chosen to reduce the number of weights, and to avoid encountering memory limitation 

errors (Figure 8a). Various 2D convolution kernel sizes were then tested to find an optimal 

kernel scale, where a 3X3 kernel was chosen as larger kernel sizes resulted in some 

blurring (Figure 8b). The validation loss and the peak signal-to-noise ratio (PSNR) value 

showed an almost monotonic decease during training, without batch normalization 

(Figure 8c). In contrast, batch normalization resulted in a wild fluctuation of the validation 

loss, attributed to the small batch size (which was limited by memory), as well as of the 

PSNR value, therefore, it was not used (Figure 8d).  
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Figure 8. Parameters optimization visualization. Scale bar is 10 𝜇𝑚. a) Network results with different layer depths. b) 

Network results with different kernel sizes. c) Loss function and PSNR values without batch normalization. d) Loss 

function and PSNR values with batch normalization. 
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4.11.2. Network hyper-parameters optimization 

The network optimizer, weights initializer, and activation function were set following an 

initial grid search over 450 different combinations. Various networks with specific 

parameter combinations were then ranked according to the mean PSNR value of the 

validation set. Subsequently, optimization of the hyper-parameters was done using a 

second grid-search of 150 combinations for 4 different parameters including the epoch 

number, batch size, drop-out factor value, and the weight 𝜆 of the 𝑙1 penalizer in the loss 

function. Table 2 summarizes the values of the different parameters tested, and Table A1 

in the appendix summarizes the combinations, ranked by their PSNR values. Final 

parameters of both grid searches were chosen as those which yielded the highest mean 

PSNR value of the validation set. Due to the relatively small number of images, the final 

network was trained on the entire dataset, i.e., both the training and validation images 

(total of 1192), to exploit all available data for the learning process. Following this final 

training, we tested our network performance on the test dataset. Final learning curves of 

this network represented by the loss and PSNR values can be seen in Figure 9.  

Table 2. Network optimization hyper-parameters 

Parameter Tested  Chosen  

Kernel initializer 

He normal distribution [4], 

Glorot uniform distribution [5], 

Normal distribution, 

Uniform distribution, 

Zeros 

He normal distribution 

Activation Function 
ReLu,  

Leaky ReLu 
ReLu 

Optimizer 
Adam,  

Adam with decay learning 
Adam with decay learning 

Epoch number 50, 75, 100 100 

Batch size 4, 8 8 

Drop-out coefficient 0.0, 0.05, 0.1, 0.15, 0.2 0 

𝐿1 penalizer weight λ  0.1, 0.25, 0.5, 0.75, 1.0 0.1 
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Figure 9. Final learning curves of the network. a) Loss function. b) PSNR values of the final network training. 

4.12. Network training 

The model performs supervised learning[155] using the 512×512 pixel-size LR input 

images and the 2048×2048 labeled SRRF images that serve as ground truth, and outputs 

HR images of the same size. The training was done using 1192 images, containing both 

long and short SWCNTs, to ensure the network can resolve all SWCNT length 

distribution concurrently. Adam optimizer[156] and decay-learning method[157] were used 

for adaptive optimization of the learning rate (initially set to 0.001) during the learning 

process. All kernel weights were initialized using a truncated normal distribution centered 

on 0, implemented by Keras ‘He Normal’ initializer.[158] We trained our network for 100 

epochs with a batch size of 8. The PSNR, which is maximized by the minimization of our 

loss MSE function, is a common image quality measurement used to evaluate and 

compare SR models;[159] however, it is limited by its ability to capture perceptually 

relevant differences.[160–162] Therefore, PSNR was chosen as an evaluation metric and not 

as the network cost or optimization function. Training and evaluation were run on a 

standard workstation equipped with 32 GB of RAM memory, and a Nvidia GeForce RTX 

2080 Ti GPU with 11 GB of memory. Full network training took 18 minutes. 
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5. Results and Discussion 

5.1. SWCNT suspension characterization and imaging 

SDBS-SWCNT suspensions were characterized by a UV-Vis-nIR absorption 

spectroscopy, where sharp absorption peaks indicated a successful suspension (Figure 

10a). The nIR fluorescence emission spectra of SDBS-SWCNT were measured under a 

variety of excitation wavelengths showing distinguishable peaks corresponding to the 

different SWCNT chiralities in the suspension (Figure 10b).[33] 

 

Figure 10. SDBS-SWCNT characterization. a) Absorption spectrum of SDBS-SWCNT. Presented results are of an SDBS-

SWCNT suspension following 30 s sonication time, as suspension concentrations obtained from shorter sonication 

times were below the spectrophotometer threshold sensitivity. b) Excitation-emission map of SDBS-SWCNTs. Result 

shown are of a 10 s sonication suspension as a representative solution for the various sonication times. 

To produce high SNR fluorescence images SDBS-SWCNT were immobilized on PLL-

coated coverslips and imaged in TIRF mode in the nIR wavelength range (Figure 1b). 

Different incubation times of the negatively charged SDBS-SWCNT on the positively 

charged PLL-coated coverslips were used to vary the density of the immobilized 

SWCNTs. The coverslips were then mounted on an inverted nIR fluorescence microscope 

for TIRF imaging. The obtained 512×640 pixel images were first cropped to cubic images 

of 512×512 pixels and then processed by the SRRF algorithm, followed by manual 
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adjustments of background removal and contrast enhancement. Finally, the SRRF 

algorithm produced 2048×2048 super-resolution images, used as the GT for training our 

CNN (Figure 5a). Subsequently, and after separation by SWCNTs densities (high and 

low), all images were rotated and flipped horizontally as part of an augmentation process 

(Figure 6) to expand our resulted data set. 

 

5.2. Network validation and testing 

We used a CNN architecture, based on U-NET[139], to produce HR images of SWCNTs. 

U-NET, a CNN named after its symmetric U-shaped architecture of an encoder blocks 

follow by decoder blocks, was original introduced as a segmentation network. Contrary 

to the original U-NET, our network has an asymmetric architecture, with two ancillary 

decoding blocks that were added to the decoder, in addition to the 4 decoding blocks that 

are coupled to 4 corresponding encoding blocks by skip connections to provide larger 

output images (2048×2048) from the input frames (512×512). 

Following the network supervised training using the SRRF 2048×2048 HR images as our 

desired GT, we validated our network on 100 images, which were chosen randomly with 

the same density distribution as the initial data set. The resolution improvement for the 

test set was quantified using the FWHM criterion, calculated from a standard Gaussian 

fit to a cross-section of 10 random SWCNTs in one representative image for each image 

category (e.g., low and high density), for all three images types (i.e., input image, SRRF 

image, and the network predicted image). In order to compare the resolution, we 

calculated the FWHM of the input image, the SRRF GT, and the HR predicted output 

(Table 3). The quality of predicted images was evaluated from the SNR values, which 

were calculated based on 5 images for each image category. Both FWHM and SNR values 
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are shown in Table 3, including the improvement factor compared to the original LR 

images. 

Table 3. Resolution and image quality parameters 

Image 
Evaluation 

Parameter 
LR SRRF HR 

SRRF 

Improvement [%] 

Network 

Improvement [%] 

Low Density 
FWHM m] 0.95±0.11 0.66±0.09 0.74±0.02 29.6±13.1 21.1±7.6 

SNR [dB] 28.4±1.3 34.7±0.8 42.1±0.8 22.4±5.8 48.7±7.5 

High Density 

FWHM m] 0.95±0.06 0.66±0.03 0.73±0.02 30.7±6.7 22.7±5.4 

SNR [dB] 28.4±1.1 35.6±0.9 40.1±1.7 25.7±8.1 47.4±5.8 

Short 

SWCNTs 

FWHM m] 1.1±0.2 0.8±0.1 0.78±0.06 28.5±22.7 27.4±16.6 

SNR [dB] 29.3±0.4 33.9±0.7 42.4±0.5 15.7±4.1 44.8±2.5 

Long 

SWCNTs 

FWHM m] 0.95±0.07 0.75±0.1 0.77±0.04 20.5±15.4 18.5±7.0 

SNR [dB] 28.3±1.1 34.9±1.8 41.8±1.5 23.3±5.4 47.9±6.1 

 

We first tested our network performance on images with varying SWCNT densities 

(Figure 11a, b). The averaged FWHM values of the fluorescent SWCNTs in the low 

density LR images were 0.95 ± 0.11 μm  while the HR FWHM values were 0.74 ±

0.02 μm. Although the overall background brightness of the dense images is higher 

compared to the sparse, low-density images, the network could resolve individual 

SWCNT in higher densities as well, resulting in an improvement of the averaged FWHM 

values which were 0.95 ± 0.06 μm and 0.73 ± 0.02 μm for LR and HR images in the 

high-density images, respectively. 

Moreover, we tested our network performance on images with both short and long (up to 

10 μm) SWCNTs (Figure 11c, d). FWHM values of the LR images were 1.1 ± 0.25 μm 

and 0.95 ± 0.07 μm , for short and long SWCNTs images respectively, whereas the 

predicted HR images FWHM values were 0.78 ± 0.06 μm  and 0.77 ± 0.04  μm 

respectively. Although long SWCNTs can be twisted and curled, our network managed 
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to successfully predict HR SWCNTs images for both long and short SWCNTs and is not 

limited to resolving only spherical or cylindrical shapes.  

Overall, we showed  21 ± 7%, 22 ± 5%, 27 ± 16% and 18 ± 7% improvements in the 

FWHM values of the SWCNTs in the predicted HR images, compared to the LR images, 

for the low-density, high-density, short, and long SWCNT images, respectively, which 

are all statistically significant results (Figure 11e). Similar improvement values were 

obtained for the SRRF images compared to the LR images, showing no statistically 

significant difference between the SRRF and predicted-HR images (Figure 11f). 

With an overall average FWHM improvement of 22 ± 9% compared to the input image, 

and an increase in the SNR values of all HR images compare to the LR images (Table 3), 

we successfully showed improvement in both the resolution and quality of the images 

across a range of different SWCNTs lengths and densities.  
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Figure 11. Network results compared to the SRRF algorithm. Red lines represent the cross section used for calculating 

the FWHM of individual SWCNTs. Each row represents different image properties. From left to right: original TIRF 

image input, SRRF output, network output, and FWHM analysis based on the intensity cross-section of SWCNTs 

marked in red lines fitted by a gaussian. Scale bar stands for 10 𝜇𝑚 a) Low density SWCNTs image. b) High density 

SWCNTs image. c) Short SWCNTs image. d) Long SWCNTs image. e) Mean FWHM calculated for 10 individual SWCNTs 

from each image type. * Represents a statistically significant difference compared to the input LR images (*P < 0.01). 

f) Improvement factor of the FWHM value compared to the LR TIRF input images.  
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To further challenge the reconstruction performance of our network, we tested complex 

imaging conditions such as low SNR, high-intensity-background images, as well as 

images with SWCNTs in close proximity with spatially overlapping fluorescence. In the 

case of poor SNR and noisy, bright background, our network showed a FWHM value 

improvement of  33 ± 12%  (Figure 12a) and an SNR improvement of 47 ± 5% , 

demonstrating that our network can remove backgrounds, thus improving the contrast and 

sharpness of the predicted image. Further, we successfully demonstrated the separation 

of two neighboring SWCNTs (Figure 12b), where the normalized ratio of the maximum 

intensity peak and the minimum intensity value between the peaks improved from 0.6 to 

1. Upon closer inspection of the FWHM analysis plots (Figure 11a-d, Figure 12a, b), the 

gaussian fit of the intensity cross-section in the SRRF outputs and the network predicted 

images nearly overlap, further exemplifying the successful learning process of our 

network given the SRRF GT. Nevertheless, there are some cases in which the two 

gaussians differ, such as in Figure 12b, where a local maximum appears between the two 

main peaks only in the SRRF output. This difference is attributed to ‘edge’ artifacts in the 

SRRF algorithm[108] that may cause two separate SWCNTs to appear connected when in 

fact they are merely adjacent, and will be further discussed in the following section.  
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Figure 12. Network performance for complex imaging conditions. Scale bar stands for 10 𝜇𝑚 a) Bright background 

with low SNR TIRF image, its corresponding SRRF GT, network predicted image and a comparable FWHM analysis for 

all three images. b) TIRF image of SWCNTs in close proximity with overlapping fluorescence, its corresponding SRRF 

GT, the network predicted image and a comparable FWHM analysis for all three images. c) Mean FWHM calculated 

for 10 corresponding individual SWCNTs in all three images. * Represents a statistically significant difference 

compared to the input LR images (*P < 0.01). d) Improvement factor of the FWHM value for every image compared 

to the LR TIRF input images. 

The peak signal to noise ratio (PSNR) value is commonly used as a quantitative measure 

of image reconstruction quality in deep-learning-based SR models, where a higher PSNR 

generally indicates a reconstruction of higher quality. We have calculated the PSNR 

values of all image categories by averaging over 5 output images per category, compared 

to the GT images of the SRRF algorithm (Table 4). 
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Table 4. PSNR values of predicted images compared to the GT SRRF images 

Image 

category 
Low Density 

High 

Density 

Short 

SWCNTs 

Long 

SWCNTs 

Low SNR (high 

background) 

Closely-located 

SWCNTS 

PSNR [dB] 36.6 ± 1.3 30.5 ± 0.7 30.4 ± 1.1 31.5 ± 3.6 30.9 ± 0.1 26.1 ± 2.8 

 

5.3. Super-resolution of videos 

In a previous study[108] we demonstrated improved resolution of videos using the SRRF 

algorithm, and showed that it could capture the bending dynamics[12] of diffusing 

SWCNTs and their mean-square displacement. However, since SRRF uses temporal 

correlation within the radiality stack to create the final SRRF image,[86,117] the temporal 

resolution was decreased since 10 consecutive frames were used by the SRRF algorithm 

to produce a single super-resolved frame in the video output. Figure 13a shows snapshots 

taken from a video of SWCNTs, and their corresponding HR output images of our 

network. Due to our network ability to resolve single frames without the need for temporal 

information nor preprocessing, our approach provides high resolution videos, frame-by-

frame, in real-time, with the same temporal resolution as the input video. 
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Figure 13. Super-resolved video frames. Scale bar stands for 2 𝜇𝑚 a) Representative comparison of both SRRF and 

CNN methods shows the difference in temporal resolution and the number of extracted frames. b) Snapshot from the 

original video, its corresponding SRRF resolved image, the network predicted image, and a comparable FWHM 

analysis for all three images, based on the solid red line.  c) Pixels intensity analysis for ‘edge’ artifacts, corresponding 

to the green lines. d) Comparable pixels-intensity analysis for the background artifacts, corresponding to the blue 

lines. 

The FWHM value of the input LR frame (Figure 13b) is 1.16 μm, and while the FWHM 

values of the SRRF and the HR predicted images are 0.71 μm and 0.78 μm, respectively. 

Two substantial issues are worth mentioning regarding ‘edge’ and background artifacts. 

First, Figure 13c shows the intensity along the green lines in the SRRF and predicted 
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images in Figure 13b, demonstrating the ‘edge’ artifact in the SRRF algorithm. The edge 

of the SWCNTs seems to be split at its end in the SRRF image, whereas the predicted 

image shows a more uniform, single edge. This effect has crucial implications, especially 

when there are two nearby adjacent SWCNTs that may be interpreted as connected, 

therefore distorting the information in the resolved image.  

Second, the SRRF output image tends to suffer from more background noise. Figure 13d 

shows the intensity along the blue lines in the background region of the SRRF and 

predicted images in Figure 13b. These background regions were contrast-enhanced for 

ease of visualization in the enlarged areas in Figure 13b, but the intensity profiles in 

Figure 13d were extracted from the actual pixel values of both images. Comparing the 

SRRF and the predicted images, the latter benefits from significantly lower intensity 

values of the background pixels, which are hardly noticeable by the naked eye. Hence, 

our network can improve the spatial resolution and preserve the temporal resolution 

without the emergence of edges or background artifacts, thereby providing higher SNR. 

 

5.4. Network validation on non-nIR images 

So far, all validated images were taken with an InGaAs-based nIR camera to capture the 

diverse set of SWCNTs chiralities in our samples. Since SWCNTs emission wavelengths 

are in the nIR range, using an InGaAs camera provides optimal detection of the SWCNTs 

fluorescence. In order to demonstrate that no specialized optical equipment is needed for 

using our method, we further tested our network performance with fluorescence images 

taken with a silicon-based EMCCD visible camera, which is more commonly used in 

optic labs for fluorescence emitters in the visible range. The visible images were taken 

with the same setup, by switching the 900 nm long-pass dichroic mirror that directs 

fluorescence emission <900 nm to the visible camera (and fluorescence emission >900 
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nm to the nIR camera), with an 1100 nm long-pass dichroic mirror that directs 

fluorescence emission <1100 nm to the visible camera. While the nIR camera has a 

quantum efficiency (QE) of >65% at 900 nm and >85% between 1000-1500 nm, and can 

therefore detect a wide range of SWCNT chiralities, the EMCCD camera has a QE of 

40% at 900 nm which drops down to 0% at 1100 nm. Still, SWCNTs chiralities that 

fluoresce in the range of 900-1100 nm could be detected by the visible camera. Figure 

14a shows images of the same sample taken by both cameras, clearly showing a few 

SWCNTs appearing in both images. We then tested the network performance on the 

visible-range images compared to the corresponding nIR range images (Figure 14b). In a 

similar manner to the results in Figure 11 and Figure 12, the resolution improvement was 

quantified using the FWHM values, extracted from a standard gaussian fit to a cross-

section of 3 randomly selected SWCNTs from 5 different images with the visible camera 

and their equivalent SWCNTs taken with the nIR camera. The averaged FWHM values 

of the fluorescent SWCNTs prior to the network implementation, presented in Figure 14c, 

were 0.75±0.03 μm and 0.74±0.03 μm for the visible and nIR cameras, respectively. The 

corresponding FWHM values of the SWCNT in the HR network output images were 

0.55±0.02 μm and 0.55±0.01 μm, showing FWHM improvement of 26±4.1% and 

26±2.9% for the visible and nIR cameras, respectively, similar to the previous results. 

These results demonstrate the applicability of our network to fluorescence images of 

SWCNTs taken with a visible camera, without specialized optical components. 
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Figure 14. Network implementation on EMCCD camera images. Scale bars stand for 10 μm. a) Comparison between 

the fluorescence images in the visible range camera, the nIR camera, and an overlay image of both (visible in green, 

nIR in red). b) Image of the same sample taken with both cameras, and their corresponding network predicted output. 

c) Mean FWHM calculated for 15 individual SWCNTs. *Represents a statistically significant difference compared to 

the input LR images (*P < 0.01). 
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6. Conclusion and summary 

Super-resolution (SR) techniques enhance our understanding of precise structural features 

and dynamic behaviors at the nano-scale. Applied to near-infrared fluorescence imaging, 

SR approaches further benefit from reduced absorption, scattering, and autofluorescence 

in the biological transparency window.[28,72–74] SWCNTs in particular are advantageous 

nIR fluorescent probes owing to their photostable, non-photobleaching, non-blinking 

fluorescence in the range of 900 – 1400 nm.[30,42,43] Moreover, their physical and chemical 

properties, along with the ease of surface functionalization, render them favorable optical 

sensors for biomedical applications.[19,20,31]   

In this work, I have shown the advantages of deep learning via a novel, U-NET based 

CNN architecture holding asymmetric properties, for SR of fluorescence imaging in the 

nIR by demonstrating the improved resolution and SNR of SWCNT images, without the 

need for specialized imaging equipment or parameters tuning. I validated the use of the 

network on challenging imaging conditions such as low SNR images and adjacent 

SWCNTs with overlapping fluorescence, as well as diverse scenarios such as different 

SWCNT densities and lengths, that were achieved by creating and refining new 

suspension protocols, involving varying ultra-short sonication times and a two-stage 

centrifuging protocol to offer uncommonly long SWCNT. I have demonstrated an 

average spatial-resolution improvement of 22.4% compared to the original images and an 

image-quality improvement, reflected by the SNR values, over both the original and 

SRRF images in all cases. It is worthy of note that previous research done in our lab[108] 

on SRRF implementation for nIR fluorescence images of SWCNT showed an average 

improvement of 78.26% of the FWHM values, yet in the current work, I have optimized 

our imaging setup so the initial FWHM values of the SWCNTs in the LR images were 
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much smaller. Such optimization was obtained by the innovative combination of two 

protocols – through the immobilization of SWCNT on a PLL coated cover slip relying on 

opposite electrical charges, the TIRF imaging protocol yielded better results than were in 

our lab up to this point as only the immobilized SWCNTs were excited in the interference 

layer, while the rest of the unattached SWCNTs  in the sampled were excited by the 

exponentially attenuated evanescence field, hence resulting less background noise and 

better SNR. Furthermore, the SNR improvement was found higher in the network 

predicted images by an average of 47% compared to 24% for the SRRF outputs. This 

difference can be attributed to background noises and 'edge' artifacts (Figure 13c, d) that 

appear mostly at the SWCNTs ends when using SRRF method which are absent in the 

network predicted images, and I have also demonstrated an improvement in the temporal-

resolution for SR of videos compared to SRRF. Although the spatial-resolution of the 

networks’ super-resolved images is still limited by the resolution of the SRRF GT, my 

method shows significant advantages being parameter-free, requires no multi-frame 

temporal information, produces no visible artifacts in the output images and having a 

faster running of 0.75±0.002 s on average (with optional automatic pre-processing of 

4.5±0.09 s for background removal), compared to 38±2 s in the case of SRRF.  

With the purpose of highlighting this model advantages over other super-resolution 

microscopy techniques and to prove that no specialized optical components are required, 

I have demonstrated the applicability of my network on images of SWCNTs taken with a 

common silicon-based EMCCD camera in contrast to the InGaAs-based nIR camera, 

showing promising results of our network on visible range images that share the same 

standards as the results of the nIR images.  

Nonetheless, the network performances were affected by the relatively small size of the 

training dataset dictated by the complexity of experimentally obtaining the images. Some 
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of the plausible courses of action can be either utilization of suitable manipulations 

considering the size of the dataset, such as k-fold cross validation techniques. Cross-

validation is a resampling method that uses different portions of the data to test and train 

a model on different iterations. As this technique averages-out measures of fitness in 

prediction model, one can derive a more accurate estimate of model prediction 

performance, especially under small dataset that offers little certainty regarding the 

networks results. Another approach may come simply through the enlargement of the 

experimental data, but since that option was neglected due to time constraints one can 

also generate high-quality synthetic data. Nevertheless, producing synthesized SWCNTs 

data compared to other simulated dot emitters, encompasses additional aspects, including 

the shape, bending, and chirality dynamics as well as non-uniform emission properties of 

the imaged material, alongside the synthesis of background conditions similar to real 

imaging conditions. Owing to the difficulties mentioned in generating such high-

complexity data, this subject is a future field of research in the Bisker lab. Such simulated 

data will not only increase the amount of training data, but will also enable a quantitative 

assessment of the precision in the predicted location of the SWCNT in the network output 

image. Taking advantage of transfer learning can also be employed in use-cases where 

only small amounts of data are available. By reusing pre-trained model weights, and fine-

tuning it for a new problem in hand, namely super resolution, one can benefit from saving 

training time, and to not relay on a big data set, such as in our case. 

Despite the relatively small database, I believe this current model will already prove 

useful in assorted applications. For example, an upcoming study that develops a 

microchip consist of an array of immobilized functionalized SWCNTs, will allow the re-

binding of given SWCNTs to different analytes that will be pumped into and washed off 

the microchip. While the development will allow the reuse of functionalized SWCNTs 
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and measurements regarding the fluorescence modulation the probes will exhibit upon 

interaction with different analytes, the usage of my model will enable further investigation 

of the individual SWCNT behavior once interacted with the said material. Even further, 

future research that will be conducted in various biological environments such as within 

cells or even small multicellular organise such as caenorhabditis elegans will now have 

the ability to better track a single particle through space without compromising temporal 

information, and thus to offer a more accurate image of a singular SWCNT diffusing 

dynamics. In contrast to the aforementioned future uses, which relay on the development 

of new research methods, an almost immediate use for my network is the reconstruction 

of super-resolution studies using SWCNTs as imaging probes (mentioned in the chapter 

2.1.2), benefiting from shorter calculation times and better temporal resolution, which 

will enable an easier reproduction of such studies and thereby accelerate the study of 

biological environments topographies. 

In summary, being fast, parameter-free, and robust for various imaging conditions, my 

CNN-based approach for resolving nIR fluorescence images of SWCNTs is highly 

attractive as a super-resolution method. Given its simplicity and robustness, combined 

with nIR fluorescent SWCNTs, this model paves the way to sub-diffraction super-

resolved imaging in the nIR in real-time, opening a window to nanoscale structures in 

biological environment.  
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Vuković*, ACS Nano 2022, 16, 736. 

[122] J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, S. K. Lai, Proc. Natl. Acad. 

Sci. U. S. A. 2018, 115, 9026. 

[123] X. Gong, N. Renegar, R. Levi, M. Strano, Machine Learning for the Discovery of 

Molecular Recognition Based on Single-Walled Carbon Nanotube Corona-Phases, 

2021. 

[124] V. Mannam, Y. Zhang, X. Yuan, C. Ravasio, S. S. Howard, JPhys Photonics 2020, 

2, DOI 10.1088/2515-7647/abac1a. 

[125] A. Durand, T. Wiesner, M. A. Gardner, L. É. Robitaille, A. Bilodeau, C. Gagné, P. 

De Koninck, F. Lavoie-Cardinal, Nat. Commun. 2018, 9, DOI 10.1038/S41467-

018-07668-Y. 

[126] Z. Liu, L. Jin, J. Chen, Q. Fang, S. Ablameyko, Z. Yin, Y. Xu, Comput. Biol. Med. 

2021, 134, DOI 10.1016/J.COMPBIOMED.2021.104523. 

[127] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, 

A. Tejani, J. Totz, Z. Wang, W. Shi, IEEE Conf. Comput. Vis. Pattern Recognit. 

2017, 105. 

[128] H. Zhao, Z. Ke, N. Chen, S. Wang, K. Li, L. Wang, X. Gong, W. Zheng, L. Song, 

Z. Liu, D. Liang, C. Liu, J. Biophotonics 2020, 13, e201960147. 

[129] E. Nehme, B. Ferdman, L. E. Weiss, T. Naor, D. Freedman, T. Michaeli, Y. 

Shechtman, IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2179. 

[130] Y. Wu, Y. Rivenson, H. Wang, Y. Luo, E. Ben-David, L. A. Bentolila, C. Pritz, A. 

Ozcan, Nat. Methods 2019, 16, 1323. 

[131] A. Zaritsky, A. R. Jamieson, E. S. Welf, A. Nevarez, J. Cillay, U. Eskiocak, B. L. 

Cantarel, G. Danuser, Cell Syst. 2021, 12, 733. 



53 

 

[132] B. Lim, S. Son, H. Kim, S. Nah, K. M. Lee, in IEEE Comput. Soc. Conf. Comput. 

Vis. Pattern Recognit. Work., 2017, pp. 1132–1140. 

[133] J. Zhang, T. Xu, X. Li, Y. Zhang, Y. Chen, X. Wang, S. Wang, C. Wang, IEEE 

Photonics J. 2020, 12, 6900914. 

[134] C. Dong, C. C. Loy, K. He, X. Tang, IEEE Trans. Pattern Anal. Mach. Intell. 2016, 

38, 295. 

[135] J. Kim, J. K. Lee, K. M. Lee, in CVPR, 2016. 

[136] X. J. Mao, C. Shen, Y. Bin Yang, in Adv. Neural Inf. Process. Syst., 2016, pp. 

2810–2818. 

[137] Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, A. Ozcan, Optica 2017, 

4, 1437. 

[138] J. Long, E. Shelhamer, T. Darrell, J. Long, T. Darrell, Fully Convolutional 

Networks for Semantic Segmentation, 2017. 

[139] O. Ronneberger, P. Fischer, T. Brox, Lect. Notes Comput. Sci. (including Subser. 

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2015, 9351, 234. 

[140] Y. Lecun, L. Eon Bottou, Y. Bengio, P. H. Abstract|, Proc. IEEE 1998, 86, 2278. 

[141] N. I. Chervyakov, P. A. Lyakhov, M. V. Valueva, Proc. - 2017 Int. Multi-

Conference Eng. Comput. Inf. Sci. Sib. 2017 2017, 135. 

[142] M. V. Valueva, N. N. Nagornov, P. A. Lyakhov, G. V. Valuev, N. I. Chervyakov, 

Math. Comput. Simul. 2020, 177, 232. 

[143] M. ’ A. Ranzato, F.-J. Huang, Y.-L. Boureau, Y. Lecun, in IEEE Conf. Comput. 

Vis. Pattern Recognit., 2007, pp. 1–8. 

[144] W. Weng, X. Zhu, IEEE Access 2021, 9, 16591. 

[145] A. K. Ray, Information Technology : Principles and Applications, Prentice-Hall 

Of India, 2004. 



54 

 

[146] The MathWorks Inc., 2010. 

[147] S. R. S. R. Sternberg, Computer (Long. Beach. Calif). 1983, 16, 22. 

[148] N. Otsu, IEEE Trans Syst Man Cybern 1979, SMC-9, 62. 

[149] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier Nonlinearities Improve Neural 

Network Acoustic Models, 2013. 

[150] K. He, X. Zhang, S. Ren, J. Sun, in Comput. Vis. Pattern Recognit., 2016, pp. 770–

778. 

[151] K. He, X. Zhang, S. Ren, J. Sun, in Eur. Conf. Comput. Vis., 2016, pp. 630–645. 

[152] F. . & others. Chollet, 2015. 

[153] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. 

Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. 

Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. 

Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. 

Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. 

Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, G. Research, 

2015. 

[154] S. Ioffe, C. Szegedy, PMLR 2015, 37. 

[155] P. N. Stuart J. Russell, Artificial Intelligence: A Modern Approach, Prentice Hall 

ISBN, 2010. 

[156] D. P. Kingma, J. L. Ba, in 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. 

Track Proc., International Conference On Learning Representations, ICLR, 2015. 

[157] L. N. Smith, in IEEE Winter Conf. Appl. Comput. Vis., IEEE, 2017. 

[158] K. He, X. Zhang, S. Ren, J. Sun, in ICCV, 2015. 

[159] C.-Y. Yang, C. Ma, M.-H. Yang, Comput. Vis. – ECCV 2014, 8692. 

[160] Z. Wang, A. C. Bovik, H. Rahim Sheikh, E. P. Simoncelli, IEEE Trans. IMAGE 



55 

 

Process. 2004, 13, DOI 10.1109/TIP.2003.819861. 

[161] Z. Wang’, Simoncelli’, A. C. Bovik2, in Thrity-Seventh Asilomar Conf. Signals, 

Syst. Comput., 2003. 

[162] P. Gupta, P. Srivastava, S. Bhardwaj, V. Bhateja, A Modified PSNR Metric Based 

on HVS for Quality Assessment of Color Images, 2011. 

 

 

  



56 

 

Appendices 

Table A1. Fine grid search results 

combination Epoch number Batch size Drop-out 

coefficient 

𝐿1  penalizer 

weight λ  

PSNR train set 

value 

PSNR 

validation set 

value 

52 100 8 0 0.25 38.568 37.762 

1 50 8 0 0.1 38.048 37.948 

27 75 8 0 0.25 38.269 37.770 

28 75 8 0 0.5 38.250 37.729 

53 100 8 0 0.5 38.375 37.724 

29 75 8 0 0.75 37.925 37.565 

26 75 8 0 0.1 37.103 37.070 

31 75 8 0.05 0.1 36.967 36.960 

30 75 8 0 1 37.686 37.224 

7 50 8 0.05 0.25 36.961 37.313 

6 50 8 0.05 0.1 36.908 37.272 

3 50 8 0 0.5 37.399 37.374 

32 75 8 0.05 0.25 36.810 36.876 

5 50 8 0 1 37.493 37.624 

56 100 8 0.05 0.1 36.708 36.685 

55 100 8 0 1 37.504 37.135 

8 50 8 0.05 0.5 36.725 37.121 

4 50 8 0 0.75 37.079 37.191 

9 50 8 0.05 0.75 36.675 37.041 

57 100 8 0.05 0.25 36.595 36.508 

11 50 8 0.1 0.1 36.269 36.669 

33 75 8 0.05 0.5 36.665 36.202 

34 75 8 0.05 0.75 36.360 36.097 

58 100 8 0.05 0.5 36.282 36.165 

35 75 8 0.05 1 36.149 35.999 

36 75 8 0.1 0.1 35.717 35.523 

14 50 8 0.1 0.75 35.894 36.281 

59 100 8 0.05 0.75 35.861 35.653 

17 50 8 0.15 0.25 35.350 35.882 
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37 75 8 0.1 0.25 35.211 35.095 

16 50 8 0.15 0.1 35.178 35.763 

38 75 8 0.1 0.5 35.142 35.124 

18 50 8 0.15 0.5 35.073 35.556 

39 75 8 0.1 0.75 35.254 35.306 

42 75 8 0.15 0.25 35.062 35.249 

41 75 8 0.15 0.1 35.020 35.239 

40 75 8 0.1 1 35.238 35.220 

19 50 8 0.15 0.75 35.078 35.502 

43 75 8 0.15 0.5 34.838 34.963 

45 75 8 0.15 1 34.886 34.939 

21 50 8 0.2 0.1 34.984 35.572 

47 75 8 0.2 0.25 34.589 34.677 

44 75 8 0.15 0.75 34.629 34.677 

12 50 8 0.1 0.25 34.977 35.140 

2 50 8 0 0.25 34.990 35.166 

61 100 8 0.1 0.1 35.111 34.871 

20 50 8 0.15 1 34.946 35.299 

46 75 8 0.2 0.1 34.451 34.406 

49 75 8 0.2 0.75 34.450 34.415 

48 75 8 0.2 0.5 34.471 34.425 

50 75 8 0.2 1 34.485 34.441 

15 50 8 0.1 1 35.219 35.456 

23 50 8 0.2 0.5 35.038 35.292 

24 50 8 0.2 0.75 35.135 35.279 

22 50 8 0.2 0.25 34.749 35.075 

62 100 8 0.1 0.25 35.131 34.869 

10 50 8 0.05 1 34.655 34.996 

25 50 8 0.2 1 34.626 34.943 

13 50 8 0.1 0.5 34.460 34.796 

54 100 8 0 0.75 35.173 34.656 

63 100 8 0.1 0.5 35.201 34.795 

65 100 8 0.1 1 35.149 34.641 

67 100 8 0.15 0.25 34.863 34.217 

60 100 8 0.05 1 34.457 33.975 

64 100 8 0.1 0.75 34.457 33.981 
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68 100 8 0.15 0.5 34.477 34.010 

66 100 8 0.15 0.1 34.488 34.015 

72 100 8 0.2 0.25 34.524 34.055 

71 100 8 0.2 0.1 34.568 34.101 

69 100 8 0.15 0.75 34.580 34.113 

70 100 8 0.15 1 34.584 34.118 

74 100 8 0.2 0.75 34.617 34.154 

75 100 8 0.2 1 34.653 34.195 

73 100 8 0.2 0.5 34.681 34.220 
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 תקציר

- שטח פניםבעלי יחס  ת ופיזיקליות ייחודיות, וקליוכימי  ן בעלות תכונות אופטיות, ינ ה  שכבתיות-פחמן חד  ותצינורי-ננו

נוריות אלו ננו צימספר מיקרומטרים. לעד  יכול להגיע  כןאורוננומטר  1-2 נע ביןממוצע ה ןקוטר , כאשרגבוה לנפח

לשמש   ביויכולות  וחישה  הדמיה  ב-ליישומי  רבים,  ברפואיים  הקרינהייחוד  בטווח  של  להן  האופיינית   הנפלטת 

 טבעל ומעבר . עם זאת,"חלון השקיפות הביולוגי"טווח ל ף, החופ(ננומטר  1400 - 900בין ) הקרוב אדום-אינפראה

בשל מגבלת העקיפה התלויה   ,מיקרומטר(  0.7-13הננומטרי שלהם שקטן מגודל הרזולוציה של המצלמה הנפוצה )

אורכי  , שכן  סטנדרטיים  ביחס לפלאורופוריםל ננו צינוריות תהיה נמוכה יותר  ת התמונות שירזולוציבאורכי הגל,  

ה הצינוריות  הגל  מננו  בהשוואה  נפלטים  יותר  מפלואורופוריםארוכים  הנפלטים  בטווח    לאלו  גל  אורכי  הפולטים 

  מרחביות -תכונות מבניות  של  עמוקה ומדויקת יותר  הבנה  מאפשרות אשר    הרזולוציי-סופרלפיכך, טכניקות    הנראה.

שכבתיות  -את פוטנציאל הננו צינוריות חדחוצות על מנת לנצל באופן מלא  נ ,  מטריוהתנהגויות דינמיות בקנה מידה ננו

יישום . אף על פי כן,  שונות  סביבות ביולוגיותעל  מידע מרחבי וזמני  כסמנים ביולוגיים ולחלץ בעזרתן כמה שיותר  

אדום -אינפראטווח הב  חד שכבתיותפחמן  ציונוריות  -ת של ננותמונות פלואורסצנטירזולוציה על  -של טכניקות סופר

מעלה ראשית,  הקרוב  אתגרים.  נקודתי,  אלו  ציונוריות-ננו  מספר  מבנה  בעלות  חלקיקים  שיתאפיינו   אינן  וייתכן 

ולולאותב פיתולים  המונע  ,  סיבובים,  עלדבר  וחישובים  מבוססות    רזולוציה-סופרטכניקות    הסתמכות  הנחות 

מכך,  גיאומטריים יתרה  הן-ננו.  הפחמן  ו   ותבעל  כלומר  ,ןטבעמ  ותהטרוגני  צינוריות  רחבה  אורך  מגוון התפלגות 

יותר של    על אורך הגל הנפלט מהצינורית.  הכריאליות משפיעשכל  כ,  רבכיראליות   לבסוף, אורכי הגל הארוכים 

, בהשוואה לפלואורפורים נפוצים בטווח הנראה, מגבילים עוד יותר את הרזולוציה עקב  הנפלטת מהחלקיקים  הקרינה

 העקיפה. מחסום

, להשגת תמונות ברזולוציה  פרטב הקונבולוציאת השימוש בלמידה עמוקה באופן כללי, וברשתות    מדגימה עבודה זו  

. תוך ניצול היתרונות של אדום הקרוב-של האינפראבטווח הספקטרלי  שכבתיות  -ננו צינוריות פחמן חדגבוהה של  

ואורכים  ת  יוצפיפו  טווח רחב שלתמונות ברזולוציה גבוהה עבור    הצלחנו לייצר  ,רשתות קונבולוציהלמידה עמוקה ו

לרעש מאתגרים.  -ן רחב של תנאי הדמיה עם יחסי אותמגוו כמו כן גם עבור  , ושל ננו צינוריות בתמיסות המצולמות

מיוחד.    אופטי   ידני או ציוד   יםשאינה דורשת כוונון פרמטר   רובסטית  רזולוציה-סופר  , לראשונה, גישתעבודה זו מציגה
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רזולוציה אחרות  -סופרמהבהבים, בניגוד לשיטות  או    נה מצריכה פלואורפורים סטוכסטייםיתרה מכך, הגישה שלנו אי

 (. PALMפעילה )-( או לוקליזציה פוטוSTORMמיקרוסקופיה סטוכסטית )שחזור אופטי של  כגון 

אימנוזו  בעבודה ופענוח,  ,בקבוק"-"צוואר  ארכיטקטורת בעל    קונבולוציה  רשת   ,  קידוד  על עקרון  תוך   המבוססת 

(.  SRRFעל )-תתנודות רדיאליות ברזולוצי  הנקראת  ,רזולוציה -לסופרקיימת    אנליטית  שיטה  על בסיס  למידה מונחה 

עבור מגוון   רעש-יחס האותשיפור בולט הן ברזולוציה והן ב על תמונות חדשות ונוכחנו לגלות  שלנו רשתאת ה בחנו

  רזולוציה -הדגמנו יישום של סופריתרה מכך,    פחמן.הונות של ננו צינוריות  וצפיפויות ש  רחב של צורות, אורכים

מבלי להתפשר על הרזולוציה הזמנית של רצף צינוריות,  ה-ננום המתעדים תנודות של  ל סרטוני עבזמן אמת  בשיטה זו  

בתחום   משמעותית  דרך  אבן  מספקת  זו  עבודה  המקורי.  ברזולוצההפריימים  שימוש   על-ייתמיקרוסקופיה  תוך 

טווח  ברזולוציה  -תמונות סופריצירת  ל  ,ללא פרמטרים  ,בטכניקות למידה עמוקה להשגת אלגוריתם מהיר במיוחד

דבר היוכל  בפרט, צינוריות פחמן חד שכבתיות-ננו כלל, ושלכשאינם כדוריים  חלקיקיםשל  ,אדום הקרוב-אינפראה

 .מטרימידה ננוהבקנה ביולוגיים  -כסמנים אופטיים צינוריותשימוש מעשי ב לעבר נוסףלקדם אותנו צעד 
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אביב -אוניברסיטת תל    
  הפקולטה להנדסה ע"ש איבי ואלדר פליישמן

סליינר-בית הספר לתארים מתקדמים ע"ש זנדמן  

  

שכבתיות הפולטות  -צינוריות פחמן חד-של ננורזולוציה -סופר 

   אדום הקרוב-פלורסנציה באינפרא

 

רפואית-הוגש כעבודת גמר לקראת התואר "מוסמך אוניברסיטה" בהנדסה ביוחיבור זה   

 

ידי-על  

 ברק כגן 
 

רפואית-העבודה נעשתה במחלקה להנדסה ביו  

 

 בהנחית ד"ר גילי ביסקר

 תשרי תשפ"ג 
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אביב -אוניברסיטת תל    
  הפקולטה להנדסה ע"ש איבי ואלדר פליישמן

סליינר-בית הספר לתארים מתקדמים ע"ש זנדמן  

  

שכבתיות הפולטות  -צינוריות פחמן חד-של ננורזולוציה -סופר 

אדום הקרוב -פלורסנציה באינפרא  

 

רפואית-חיבור זה הוגש כעבודת גמר לקראת התואר "מוסמך אוניברסיטה" בהנדסה ביו  

 

ידי-על  

 

 ברק כגן 
 

 תשרי תשפ"ג 

 

 

 


