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Abstract

Single-walled carbon nanotubes (SWCNTSs) have unique optical, chemical, and physical
properties, and are high aspect-ratio nanoparticles being 1-2 nm in diameter and up to
several micrometers in length. SWCNTSs can be utilized in numerous biomedical imaging
and sensing applications, owing to their near-infrared (nIR) fluorescence between 900 —
1400 nm, which overlaps with the biological transparency window. However, in addition
to their nanometric nature which is smaller than the common camera’s resolution size
(0.7-13 um), their longer emission wavelengths compared to fluorescent emitters in the
visible range result in a lower resolution due to the diffraction limit. Hence, super-
resolution (SR) techniques which enhance our understanding of precise structural features
and dynamic behaviors at the nano-scale, are necessary in order to fully exploit SWCNTs
as optical probes for both spatial and temporal information and to fathom biological
environments. Nonetheless, super-resolving fluorescence images of SWCNT in the nIR
presents several challenges. First, SWCNTSs are not point-emitters and can have turns,
twists, and loops, impeding geometry-based SR techniques. Moreover, the SWCNT
suspensions are heterogeneous in nature, having a wide length distribution and multiple
chiralities, each of which fluoresce in a different wavelength. Finally, the longer
wavelengths of the fluorescence, compared to common fluorophores in the visible range,
further limits the resolution due to the diffraction barrier.

This work demonstrates the use of deep learning in general, and convolutional neural
networks (CNNs) specifically, for achieving high-resolution images of SWCNTSs in the
nIR spectral range. Utilizing the advantages of state-of-the-art deep learning and CNNs

we obtain high-resolution images for a variety of SWCNT densities and length



distributions, and a wide range of imaging conditions with challenging signal-to-noise
ratios (SNRs). This essay shows, for the first time, a robust SR approach that requires no
manual parameter tuning nor special equipment. Moreover, our approach does not require
stochastic, blinking, or photo-switchable fluorophores, in contrast to other SR single-
molecule localization microscopy methods such as stochastic optical reconstruction
microscopy (STORM) or photoactivated localization microscopy (PALM).

We train an encoder-decoder architecture network, using super-resolution radial
fluctuations (SRRF) analytical approach as our desired ground truth. We validate our
CNN and show a notable improvement, on average, of 22% in the resolution and 47% in
SNR compared to the original images for a broad range of SWCNTSs shapes, lengths, and
densities, whereas SRRF leads to only 24% SNR improvement. Further, we demonstrate
real-time super-resolution of SWCNT videos without compromising the temporal
resolution of the original sequence of frames. This work provides a significant milestone
in the field of super-resolution (SR) microscopy using deep learning techniques to
achieve an ultra-fast, parameter-free algorithm for super-resolving images of non-
spherical emitters in the near-infrared at large, and of SWCNTs in particular, further

advancing their applicability as optical probes at the nanoscale.
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1. Introduction

Single-walled carbon nanotubes (SWCNTS), visualized as a one-dimensional cylinder of
a rolled-up sheet of carbon atoms arranged in a honeycomb lattice, find numerous
biomedical applications including imaging and sensing in the nIR.[*2113-20 For sensing,
functionalized SWCNTs can bind specific analytes such as proteins, small molecules,
metal-ions, or bacteria, and exhibit fluorescence modulations upon interaction, whereas
for imaging, they can be easily tracked in complex biological environment owing to their
near Infra-Red (nIR) fluorescence in the range of 900-1600 nm,[12:13:22-24.14-21]

In order to fully exploit SWCNTs as optical probes for both spatial and temporal
information, the nanotubes should be individually imaged, tracked, and resolved.?>281 By
doing so we can bridge the gap between cellular observations and molecular structure
knowledge.

However, the diffraction of the long nIR wavelengths SWCNTs emits limits the
resolution, creating an additional challenge compared to the visible range, when
attempting to observe internal structures. Specifically, SWCNTSs fluorescence emission
occurs primarily between 900-1600 nm!?®! resulting in a diffraction limit of ~450-800 nm
whereas for commonly used dyes the resolution limit is in the range of 250-300 nm. %
Therefore, there is a growing need for improving the spatial resolution of fluorescence
images of SWCNTSs in the nIR in order to fully utilize their optical properties and
fluorescence emission in the biological transparency window for imaging, tracking, and
sensing.[**2031 Nonetheless, most of nowadays super-resolution microscopy techniques
are depended on specific imaging equipment, long processing time, or can resolve only

geometrically-homogeneous sensors.



In this thesis, | have developed a machine learning algorithmic approach for super-
resolution of SWCNTs in the nIR range. | have demonstrated my approach on nIR
fluorescence images of SWCNT samples with various length distributions and densities
(hence, proving it to be independent on the markers geometrical-homogeneity), as well
as complex image conditions [e.g., bright background with low signal to noise ratio
(SNR), and closely located SWCNT with overlapping point-spread functions (PSFs)] and
real-time movies of diffusing SWCNTs, and showed an average full-width-half-max
(FWHM) improvement of 22.4% compared to the original LR images.?! To do so, | first
synthesized heterogeneous samples of short and long nanotubes by tuning sonication
times (Figure l1a), and imaged immobilized SWCNTs in total internal reflection
fluorescence (TIRF) mode to optimize the SNR (Figure 1b). Then, | addressed the
aforementioned challenge of the diffraction limit in the nIR range, and counter the need
for an ultrafast, parameter-free algorithm for precise localization and super-resolution of
SWCNT images by harnessing the advantages of a convolutional neural network (CNN)
(Figure 1c). Utilizing basic augmentation operators, | expanded the data set of TIRF low-
resolution (LR) images by a factor of almost 10, from which | obtained a labeled data set
of high-resolution (HR) images, by implementing an existing super-resolution algorithm,
as our ground truth (GT) HR images. The LR and HR data sets are used as a part of the
supervised learning process of the CNN. My results extend the applicability of SWCNTs
as optical probes for imaging in complex and heterogeneous biological samples, and open

new avenues for super-resolution microscopy in the near-infrared range.
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Figure 1. Schematic representation of the working protocol. a) SWCNTSs suspension with SDBS using varying sonication

times for producing different length distributions of nanotubes, with representative fluorescent images of SWCNTs

lengths. Scale bar stands for 5 um. b) SWCNT immobilization on poly-L-lysine-coverslip for TIRF imaging in the nIR

wavelength range. c) Encoder-decoder convolutional neural network (CNN) representation for high-resolution images

of SWCNTs. Created with BioRender.com.



2. Theoretical background

2.1. Single walled-carbon nanotubes

2.1.1. Structure and properties

Carbon nanotubes are rolled up cylinders of graphene sheets (Figure 2a) composed of
sp2- hybridized carbon atoms.?% With an inner diameter of 1-2 nanometers, and length
of 300 nm — 10 pum,*?%® SWCNTs have unique physical,2**! chemical,®6:%"]
mechanical,® and electronic properties.*°! Both the SWCNT's chemical and physical
properties are structure-dependent, as there are many different angle to roll-up the
SWCNTs which leads to a variety of SWCNTSs structures. The angle values can be
described using two integer values (Figure 2b) — a, and a,, which denotes the lattice
basic vectors of the graphene layer. Hence the SWCNT's angle at which it can be rolled

up can be described by a vector which is a linear combination of the two:

c = na, + ma, (1)

The different geometries are described by the (n,m) index and are known as the SWCNTSs
chirality. The (n,m) index is related to diameter of the SWCNT:

d == % rm + m? 2)
s Y

Where a, is the graphene lattice constant (0.246 nm).

The (n,m) values also describe whether SWCNTs exhibit metallic, semimetallic or
semiconducting properties. The density of electronic states, as well as the band gap
between the conduction and valence band are related to these properties and determine
whether a SWCNT is fluorescent.l! Due to the electronic band-gap between valence and
conduction band semiconducting SWCNTSs are fluorescent in the nIR.[“) Transitions
from the conduction to the valence band lead to fluorescence, where the E,, transitions
lead to absorption (v2 — c2) and the E;; transition to the fluorescence emission (c1 —

v1) (Figure 2¢)%
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Figure 2. SWCNT's structural properties. a) Illustration of SWCNTs consist of a graphene sheet rolled up to form a
cylinder. b) The roll up vector c is defined as ¢ = na; + ma,. SWCNT are generated by rolling up the graphene
sheet along this vector and superimposing the first and the last carbon atom. An example (green) for the (7, 3) SWCNT
is given where ¢ = 7a; + 3a,. c) Density of electronic states of a semiconducting SWCNT.

Unfunctionalized SWCNTSs consider to be hydrophobic?’ and tend to form bundles due
to strong van der Waals forces. Functionalizing SWCNTSs with amphiphilic molecules or
polymers, which is possible owing to the material's high surface area,’”® can form a

colloidal suspension of individually dispersed SWCNTs.[2941]

2.1.2. SWCNTs as imaging probes
The unique optical and electronic properties of SWCNTs make them favorable as
fluorescent sensors for biomedical applications, in particular due to the SWCNTs
fluorescence emission in the nIR range (900-1600 nm) which does not photobleach nor
blink.[042431 Generally, when super resolving structures within biological tissue, imaging
in the nIR with an emission wavelength of A>900 nm, is favorable due to the “optical
transparency window” where light scattering is suppressed, and imaging penetration

depth is maximized.[***% Moreover, given proper functionalization SWCNTSs are highly
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bio-compatible,[“¢471 making them biocompatible probes in the biological transparency
window range, where commonly imaging relies on nanoparticle probes containing toxic
elements.[*84°1 As so, SWCNTSs have already were successfully utilized as imaging and
sensing probes in various applications such as within plants,[1%5°-521 Jjve cells,®*51 whole
animals, (4258601 and brain tissue,2621 for example the brain extracellular space
(ECS).I%%1 Beside than extracting information on a biological environment, imaging and
monitoring moving SWCNTSs in fluidsi23 or gelst*4l as well as fixed samplest*5-8l can
be beneficial for applied science and for our understanding of SWCNTSs dynamics.

Yet, imaging the SWCNTSs fluorescence in the nIR gives rise to a major challenge as the
longer emission wavelengths > 900 nm, result in a lower resolution due to the diffraction
limit, compared to imaging with shorter emission wavelengths in the visible range using
common fluorescence dyes,° compromising the resolution of the taken image. Another
challenge attached to SWCNT imaging, is the heterogeneity of SWCNT samples both in
their shape-geometry, stemming from synthesis and suspension procedures which result
in a wide distribution of SWCNTSs lengths,[5* ¢ and in emission wavelengths, originate
from the material properties. Those heterogeneous properties hinder the ability to
individually resolve SWCNTSs as imaging probes using both standard imaging methods

or super-resolution techniques alike.

2.2. Super-resolution microscopy methods

Fluorescence microscopy is a widely-applied and invaluable tool for monitoring sub-
cellular biological processes in real-time,[7-%9 yet its spatial resolution is limited,
according to Abbe’s diffraction theory,['®™ by approximately half the wavelength of
light. Imaging in the nIR range with longer wavelengths than the visible light further

exacerbates this issue. Still, favorable for biomedical imaging, the nIR range overlaps
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with the biological transparency window,[’>"4 enabling numerous biomedical
applications such as sensing and imaging within deep tissue and cell-culture samples with
minimal auto-fluorescence, absorption, and scattering interferences.[*4*>7 |n standard
fluorescence microscopy, both the quality and resolution of the images are predominantly
limited by the optics, the photophysics of molecular emitters, and the sensor technology,
posing a challenge for obtaining high-resolution images. Utilizing image reconstruction
methodologies in fluorescence microscopy to solve deconvolution or super-resolution
problems can improve the resolution, and also offer solutions to additional problems such
as image denoising, registration, stitching, and fusion.”8 78! In deconvolution, for instance,
a precise understanding of the optical system's properties (e.g. the PSF or the system's
numerical aperture) and the characterization of the accompanying noise are required.
Such classical methodologies have led, among others, to the design of popular algorithms
such as Richardson—Lucy deconvolution,[”®2% which requires knowledge of the PSF of
the microscope and assumes Poisson noise statistics. Without such prior knowledge, data-
driven or data-based methods may be more broadly applicable to solve image
reconstruction problems.® Super-resolution algorithms achieve their goal by localizing
a sparse set of emitting fluorophores in single or multiple frames, through stochastic,
analytical, or mathematical approaches. Some super-resolution methods are considered
localization algorithms that provide a table of localized positions of the emitters, whereas
other methods provide a super-resolved image without localization.®283! |n the past years,
many super-resolution microscopy methods have been developed?®! to overcome the
diffraction limit and to enable observations of features at a nanometric scalel® by
utilizing photo-controlled emission of fluorescent molecules.®31 Camera-based super-
resolution approachest®! such as single-molecule localization microscopy (SMLM)B4

methods, namely, photo-activated localization microscopy (PALM),®78l stochastic



optical reconstruction microscopy (STORM),%% and points accumulation for imaging
in nanoscale topography (PAINT),®* rely on acquiring a sequence of diffraction-limited
images of a sparse set of blinking fluorophores by either molecular collisions or local
chemical environment. By localizing the emitting fluorophores with high precision based
on their PSFs frame-wise, and combining the emitter positions from all the frames, a
single super-resolved image is procured. A similar SMLM strategy was demonstrated
using SWCNTs functionalized with photo-switchable molecules, such that ultraviolet
(UV) light illumination resulted in blinking of the SWCNT fluorescence by modulating
the charge transfer to the nanotubes.l®? In these approaches standard equipment such as
a wide-field microscope, a sensitive camera and continuous-wave lasers for excitation
and activation are used,!®® however, a set of frames and a stochastically blinking
fluorophores are necessary to achieve one single HR image.

In contrast, illumination pattern-based approaches which do not rely on the use of specific
blinking emitters, grant the ability to extract nanoscale structures by mathematical
reconstruction as a second stage for frequency shifted illumination®*%l. Yet, those
methods, such as structured illumination microscopy (SIM),! stimulated emission
depletion (STED)®® and reversible saturable/switchable optical linear fluorescence
transitions (RESOLFT),®1 may often require specialized optical components. ¢l
Analytical super-resolution microscopy methods on the other hand, offer an instrumental
simplicity, such as super-resolution optical fluctuation imaging (SOF1),[°8 and super-
resolution radial fluctuation (SRRF).[66%°]

Super-resolution microscopy push the boundaries of resolving nanometric structures and
dynamics, and can shed light on complex biological structures in the microscale utilizing
imaging probes!*® and single particle tracking (SPT).X4101 This method, (i.e., SPT)

which has been used to unfold dynamic information in many systems such as crystalline



hosts,[19%] catalytic conversions, % and heterogeneous biological
architectures, 6271041051 js achieved by resolving frame by frame video recordings of
single-particle diffusion to reconstruct the particle trajectory.['%61971 A notable advantage
of SWCNTs is that they can be used to generate HR data of various complex
environments in the nIR range, rendering them favorable imaging probes for HR bio-

imaging.[?8l

2.3. Super-resolution radial fluctuations

Super-resolution radial fluctuation (SRRF), is a recent developed analytical approach for
super-resolution microscopy, that eliminates the need for specialized optical components,
or fluorophore detection and localization,® and can be performed on standard wide field
or TIRF microscopel®® imaging setups.

For a given sequence of images SRRF magnifies each pixel into subpixels, and calculates
a ‘“radiality” value based on the local symmetry resulting from the microscope PSF,
yielding a “radiality stack”.®® For each subpixel the radiality value relates to the
probability of it containing the center of a fluorophore.[8%°1 Temporal correlations within
the radiality stack are then used to create the final SRRF image.[®®% The radiality stack
created by SRRF preserves information in the gradient field which would be discarded
by other localization techniques.!® As such the radiality map on its own can already
improve the resolution prior to the temporal analysis as we have demonstrated by
applying SRRF to a single frame of a SWCNT in prior research done in our lab.[%®l SRRF
has been used for imaging cellular processes,[®®%11] distinguishing DNA base-pair
distance,™? calcium imaging,™**®! ultrasound microvascular imaging,i**°! and traction
force microscopy,™?% proving to be highly successful and widely used. Recently, SRRF

has been usefully applied to nIR fluorescence images and videos of SWCNTs. [%€]

9



2.4. Convolutional neural networks

Another highly promising paradigm in the field of image processing and computer vision
in recent years is machine learning,*?%1?51 with CNNsl*?%126-1331 gpearheading the
advancements, showing impressive results in a variety of applications such as single-
image resolution enhancement(**-13"] and segmentation.381%

CNN consists of input and output layers, as well as several hidden layers. The hidden part
of CNN consists of a convolutional layer (i.e. 2 or 3-dimentional convolution is performed
on the input data matrix using a moving kernel), pooling layer, and a fully connected
classifier, which is a perceptron that processes the features obtained on the previous layers.
Consider the part of CNN, which is responsible for the selection of features, and consists
of a spatial convolution layer and a pooling layer that implements the max pooling
operation.[**%l Suppose that the image | consisting of R rows, C columns and D color
channels is the input of CNN (e.g. RGB images have a D = 3 while greyscale images have
D =1). The CNN input can be described as a three-dimensional function I (x, y, z) in this
case, where 0 <x<R,0<y<Cand0<z<D are the spatial coordinates, and the amplitude
I at any point with coordinates (X, y, z) is the intensity of the pixels at that point. Procedure

for obtaining characteristics in arrays convolutional layer can be represented as

(e, y) = b+ Xie_ Xjm Ze=o Wijp - 1(x + i,y + ], k) 3

Where: Ir is the predicted matrix (feature map), W;;, is a w X w X D kernel for
processing D 2-dimentional arrays, b is an offset parameter!*4land ¢t = WT_l CNN usually

uses a large number of filters in the convolutional layer which leads to a sharp increase
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in the amount of data processed in the network. The pooling layer of max pooling in some
considered neighborhood is used to reduce them.!*4? Figure 3 schematically shows a
convolutional process of yielding a feature map and a max pooling operation using a filter

mask of size w X w and stride w.

(a) i (b)

x] [ = UEENERNN }
HAE 1] Filter | 1111111
2 e function /| .
i clio ]

Input image. / Feature map. Iy W
Figure 3. Representative principles of CNN layers. a) Represention of obtainment of feature maps post-convolutional
layer. b) Max-pooling layer principle representation.
However, the CNN in this work lacks the fully connected classifier as the goal-output is
anew image matrix, therefore a fully-convolutional-network (FCN) design was embraced.
The most widely employed CNNs architectures for image segmentation are variants of
so-called ‘‘encoder—decoder networks’’ proposed initially for unsupervised feature
learning.[**3l These encoder—decoder networks can obtain lower-level spatial resolution
features together with a deep perception of the image (semantic recognition) via down-
sampling.[***l They can also obtain higher-level spatial resolution features for highly
accurate recovery of the image via upsampling which is in favor of a key assumption in
super resolving images that states that high-frequency data is redundant as it can be
accurately reconstructed from low frequency components. The general semantic
segmentation task is to partition an image into a set of coherent regions that are connected
and non-overlapping, and that enable homogeneous pixels to be clustered together.[***l A
FCN is an end-to-end image segmentation method**! modified through replacing the

fully connected layer in a classification network by a transposed convolutional-layert*44
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but can easily transform its task to super-resolving images due to the similarity in pre-
mentioned assumptions and capabilities of the FCN.

CNN-based approaches benefit from short computation times and do not require sample-
dependent parameter tuning, in contrast to other super-resolution analytical methods, and
hence can be used as a robust super-resolution methodology for real-time measurements

under different samples properties.
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3. Research objectives

As explained in the introduction, this work aims to embed the use of deep learning
techniques for super-resolution method on individually dispersed SWCNTSs imaged using
a microscope setup with TIRF-illumination in the nIR range, and to offer an accessible,
user-friendly, super-resolution algorithm.

First and foremost, the main motivation for this work is to enable a more accurate sub-
diffraction spatiotemporal visualization of SWCNT, in order to advance the
understanding of SWCNT’s performances under various biological environments, and
thus eventually to support various developments of SWCNTSs as sensing and imaging
probes. Nonetheless, the motivations behind implementing specifically a deep-learning
based super-resolution algorithm in the nIR can be separated into two main aspects: the
imaged materiel aspect, and method's restrictions aspect.

On the one hand, the growing potential of SWCNT to act as a bio-sensor increasing the
need for super resolving images taken within complex biological samples in order to
enhance the understanding of SWCNT's dynamics in different environments. Yet, minor
changes in the imaging setup or the imaged sample can lead to a wide variety of complex
imaging condition and the imaged SWCNT's properties. Therefore, the first goal was to
develop a robust technique to resolve diverse lengths, densities and shapes (circular dots,
short straight lines and long curvy lines) of the SWCNT suspensions.

Next milestone was to tackle the limitations of nowadays super-resolution methods. As
explained in the theoretical background chapter, all existing algorithms would either
require a set of multiple images to yield one resolved frame (impairing temporal
resolution), a sample-dependent parameter tuning, specialized illumination imaging setup,

or would take up long processing time. Accordingly, by utilizing deep-learning virtues
13



we aimed our method to address these challenges by eliminating the need for special
imaging components, establishing a parameter-free method, and offering a real time
algorithm for single frames.

We believe that with its simplicity and robustness, our network will aid in paving the path
to sub-diffraction super-resolved images in the nIR, offering a better understanding of
SWCNT-based structures at the nanoscale level and help in designing biocompatible

Sensors.

4. Methods

4.1. SWCNT suspension

1 mg mL? HIiPCO Single-walled carbon nanotubes (SWCNTs, Nanolntegris) was
suspended in 4 wt% sodium dodecylbenzene sulfonate (SDBS) (Sigma-Aldrich), by a
direct tip sonication (8W for 5-20 seconds, QSonica Q125). Different sonication times
were applied to yield varying SWCNT lengths (Figure 1a). Afterwards, the suspension
was centrifuged twice (90 minutes, 16100 RCF, 25°C, Eppendorf) to separate
individually suspended SWCNT from aggregates and impurities. The top 80% of the

supernatant was extracted after each centrifugation step and the pellet discarded.

4.2. SDBS-SWCNT characterization

The absorption spectrum of the SDBS-SWCNT suspension was measured using an
ultraviolet-visible-nIR (UV-Vis-nIR) spectrophotometer (Shimadzu UV-3600 PLUS).
The excitation-emission map of the SDBS-SWCNT suspension acquired with the use of
a nIR microscope coupled to an InGaAs detector, utilizing a spectrograph (PyLoN-IR
1024-1.7 and HRS-300SS, Princeton Instruments, Teledyne Technologies). A super-

14



continuum white-light laser (NKT-photonics, Super-K Extreme) coupled to a tunable

bandpass filter (NKT-photonics, Super-K varia, AL =20 nm) was used for excitation.

4.3. SWCNT immobilization

Microscope coverslips of 18 mm in diameter were immersed in 0.1% poly-L-lysine (PLL,
Sigma-Aldrich) solution for 5 minutes, and rinsed with ethanol and water. 150 ul of 0.8
mg Lt SDBS-SWCNT suspension was dropped on a laboratory film (Parafilm, Bemis,
USA), on top of which the PLL-coverslip was placed for 5 minutes and rinsed again with
water only. Subsequently, the PLL-coverslips with the immobilized SWCNTSs were

sealed using standard nail polish and placed on top of an imaging glass slide (Figure 1b).

4.4, nIR fluorescence imaging

Total internal reflection fluorescence (TIRF) microscopy imaging was done using an
inverted fluorescence microscope (Olympus 1X83) with a 100X TIRF objective
(Olympus UAPON 100XOTIRF). SWCNT suspensions were excited by a 730 nm CW
laser (MDL-MD-730-1.5W, Changchun New Industries) through a 900 nm long-pass
dichroic mirror (Chroma, ET900Ip). The near-infrared fluorescence emission was
detected after a 900 nm long-pass emission filter (Chroma, ET900Ip) using an InGaAs-
camera (Raptor, Ninox 640 VIS-nIR) with a digital gain of 6 dB. For immobilized
SWCNTSs at varying densities, 100 frames were acquired in TIRF mode at 10 frames per
second (fps) frame rate and 80-100 msec exposure time. In order to verify the network
robustness to images with a variety of background intensities and SNRs, multiple neutral
density (ND) filters were used in the range of ND02-ND10. All images (total of 129)

were of size 640x512 pixels.
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4.5. Visible-wavelength range fluorescence imaging

Visible-wavelength range fluorescence images were taken with the same setup as used
for the nIR imaging, with one modification of the dichroic mirror that directs the
fluorescence emission light to the relevant camera, an EMCCD in this case. The same
microscope and objective were used. Likewise, SWCNT suspensions were excited by a
730 nm CW laser (MDL-MD-730-1.5W, Changchun New Industries). To detect the
SWCNTs fluorescence emission using the EMCCD camera (Andor, iXon Ultra 888), the
900 nm long-pass dichroic mirror, used to reflect the >900 nm emission to the nIR camera
and <900 nm to the visible camera, was replaced with an 1100 nm long-pass dichroic
mirror (Chroma, CT1100LPXRXT), directing the emitted light up to 1100 nm to the
visible EMCCD camera. The images were taken with an exposure time of 100 msec and
a digital gain of 1 dB. The same sample was imaged in both cameras (visible and nIR) by
switching the 900 nm and 1100 nm long-pass dichroic mirrors. The EMCCD images of
size 1024x1024 were first aligned with their corresponding images taken with the nIR
camera using MATLAB 2020a.1%¢1 The aligned imaged of the EMCCD and InGaAs
cameras, 742x594 pixels in size, were then cropped to cubic 512x512 size images and

could be overlaid (Figure 4).
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(b)

Figure 4. Andor (visible range) and Raptor (nIR range) image registration. a) From left to right: initial Andor camera
image (1024 X 1024 pixels), and its corresponding Raptor camera image (640X512 pixels). b) From left to right:
correlated and cropped Andor camera image (512x512 pixels), its corresponding correlated and cropped Raptor
camera image (512x512 pixels) and an overlay image of both. Scale bar stands for 10 um in all images. Yellow arrows

indicated corresponding SWCNTSs in both cameras.

4.6. SRRF analysis

Initial preprocessing of the images included a single pixel radius median filter to de-
speckle the images, and a rolling ball algorithm (radius 50) to remove the background
using Imagel.¥71¢1 Then, high-resolution images were obtained using a Super-
Resolution radial Fluctuations (SRRF) algorithm(®1%1171 ysing a ring radius of 0.5,
radiality magnification of 4, and 6 axes in the ring. SRRF temporal analysis was done
using a temporal radiality average (TRA), and an intensity weighting was preformed to
enhanced radiality peaks.® Since the SRRF output images were used as the data labels,

background removal (radius 50) and contrast enhancement (various factor of 0.01-0.1%)
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were applied in ImageJ*47181 to improve the images quality (See Figure 5a for visual
representation). The background removal and contrast enhancement were preformed
manually on each SRRF image to achieve the best quality output considering the input
image properties such as SWCNTs density, image brightness, and number of frames,
which directly affected the SRRF results. The preparation process of the labeled data is

described in Figure 5a.

(a)

De-noising ; Background
> -
Removal
Background SRRF
Removal
Contrast Background
- -—
Enhancement Removal
(b)
70
—60F
iy
950
()]
£40F
B30}
[
o
£20
Z
10 F
0 ] ] = =m . ,
0 0.1 02 03 04 05 06 07 08
SBR [%]

Figure 5. Original data set preparation. a) Preparation of the HR labels. All images went through the same steps of de-
noising, background removal, and SRRF algorithm, then manually tuned using background removal and contrast
enhancement to yield optimal results. Scale bar is 10 um. b) Image classification according to densities using

histogram thresholding over summed pixel value of binary images.
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4.7. Images density classification

Following the formation of the initial data sets, the images were classified by their
SWCNTSs visible density. At first, the images went through binarization (i.e., notable
SWCNT were labeled as 1, background as 0), using a grey-scale threshold value that was
calculated using Otsu’s method™® and was iteratively and manually tuned to produce
optimally binarized images. Subsequently, the number of pixels per image was summed,
and using the Otsu’s method, a separation threshold was extracted and constituted the
pixel sum threshold representing the image density (Figure 5b). Threshold was set to be
an SBR value of 0.257% (marked in orange in Figure 5b). All images with summed pixels
value lower than the threshold were categorized as low-density images, whereas the rest
were categorized as high-density images. Final data set sizes are described in Table 1.
Out of the total 129 images, 108 were classified as low-density images and the rest as
high density, resulting in an initial density ratio of 0.19. Images density classification was
performed on the SRRF HR output images considering their better contrast, as it
simplified the threshold finding process. The same predicted classification was assigned

to the labeled image as well as the corresponding LR raw image.

Table 1. Data set sizes of the different densities

Data set Low density High Density Total
Initial pre-augmentation 108 21 129
Post-augmentation 944 248 1,192
Training 869 223 1,092
Validation 75 25 100
Test 17 5 22
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4.8. Data augmentation

Since different cameras produce images with different resolutions and aspect ratios, we
chose a square size of 512x512 pixels as the input image dimensions. One advantage of
this self-imposed restriction is the ability to utilize each raw image more than once by
cropping different portions to yield a square image, thus augmenting our dataset. Raw
images that contained a considerable number of SWCNTSs in the lateral regions of the
frame were cropped twice, once for the left side square and once for the right side. On the
other hand, images with sparse information, mostly centered, were cropped only once to
maximize the number of SWCNTSs in the cropped frame. This method increased our data
set by a factor of 1.1-1.2 to a total amount of 149 images. After manual cropping
according to the spatial data distribution in each image, all of the images were augmented
by using 90 degrees rotations and a horizontal flip (Figure 6), increasing our data set by
a factor of 8. By doing so, we managed to increase our 129 initial images to a final data
set to 1192 images, with a density ratio of 0.26 of high vs low densities. Eventually, out
of the final training dataset of 1192 images, 1092 (91.6%) images were used strictly for
training, whereas the remaining 100 (8.4%) images were used for validation (Table 1).
Network performances were tested on a new test data set of 22 new images with various
SWCNTSs densities and lengths, which were not included in the initial training and
validation database. All augmentation methods were applied on both the raw and labeled

images, implemented with MATLAB 2020a.[14¢]
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Figure 6. Image augmentation for enlarging the data set. Scale bar is 10 um.

4.9, Data-sets preparation

The post augmentation data set consisted of 1192 matching pairs of LR and SRRF-HR
grey scaled images. The final data set was divided to train and validation sets with the
ratio of 9:1 respectively. Through this separation, the 0.26 ratio between high to low
density images was maintained (Figure 5b). All pixel values of the input images were
normalized to the range between 0 to 1. Network performances were tested on a test data

set of 22 images with various SWCNTSs densities and lengths.

4.10. Architecture and loss

Inspired by previous works such as Deep-STORM super-resolution-microscopy
network® and based on U-NET encoding-decoding structure,*313° our network first
encodes the spatial representation of the image features, through a monotonic
logarithmic-scale decrease in image size and an increasing depth, and then decodes the
same data by a reverse expansion section (Figure 7). The network first goes through 4
encoding blocks of the same structure — a 2D-convolution with 3x3 filter applied,

followed by a non-linear ReLu function!**®l and a 2x2 max-pooling layer.
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A Dbottle-neck block with a similar structure, i.e., a 2D-convolution with 3x3 filter
followed by a ReLu function, connects the encoder and the decoder sections. The decoder
is also built with a repetitive structure of 6 decoding blocks. The first 4 decoder blocks
consist of a 2x2 up-sampling layer, followed by an element-wise-sum residual layer!**"]
using skip connection™ to the symmetrically matching encoder layer. Then, two
successive processes of 3x3 2D convolution, and non-linear ReLu activation are
performed. Owing to different resolution and sizes of the input images compared to the
output images, two more decoding blocks are required, lacking the residual sum layers.
The network final layer of a pixelwise prediction is performed by a single 1x1 filter 2D-
convolution layer. Since a pixel-wise value prediction is required for the network output,
a regression approach was adapted by minimizing the mean-squared-error (MSE)
between the recovered HR image and the ground truth, and a weighted [, penalizer was
added to promote the sparsity of the network output. The network implementation was

done using Keras*?! with a TensorFlow!*> backend.
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Figure 7. Network architecture, based on U-NET with two additional layers. Layer sizes noted below each block.

Arrows mark skip connections between layers.
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4.11. Network Optimization

Our network was optimized by two stages of parameters grid search. First, we focused on
major architectural decisions, such as the hidden layers depth, convolution kernels size,
and the use of batch normalization.[*®* Second, we optimized the network hyper-
parameters, including the batch-size, number of epochs, activation functions, kernel
weights initializer, drop-out percentage coefficient, and the weight A of the [, penalizer
in the loss function.
4.11.1. Network architectural-parameters optimization

Our network was optimized by refining its architectural structure and parameters.
Comparing a 9-layer network to 11- and 13-layer networks, we found that the deeper
architectures resulted in better performance. Since the two extra layers in the 13-layer
network provided no substantial improvement over the 11-layer network, the latter was
chosen to reduce the number of weights, and to avoid encountering memory limitation
errors (Figure 8a). Various 2D convolution kernel sizes were then tested to find an optimal
kernel scale, where a 3X3 kernel was chosen as larger kernel sizes resulted in some
blurring (Figure 8b). The validation loss and the peak signal-to-noise ratio (PSNR) value
showed an almost monotonic decease during training, without batch normalization
(Figure 8c). In contrast, batch normalization resulted in a wild fluctuation of the validation
loss, attributed to the small batch size (which was limited by memory), as well as of the

PSNR value, therefore, it was not used (Figure 8d).
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Figure 8. Parameters optimization visualization. Scale bar is 10 um. a) Network results with different layer depths. b)

Network results with different kernel sizes. c) Loss function and PSNR values without batch normalization. d) Loss
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4.11.2. Network hyper-parameters optimization
The network optimizer, weights initializer, and activation function were set following an
initial grid search over 450 different combinations. Various networks with specific
parameter combinations were then ranked according to the mean PSNR value of the
validation set. Subsequently, optimization of the hyper-parameters was done using a
second grid-search of 150 combinations for 4 different parameters including the epoch
number, batch size, drop-out factor value, and the weight A of the [; penalizer in the loss
function. Table 2 summarizes the values of the different parameters tested, and Table Al
in the appendix summarizes the combinations, ranked by their PSNR values. Final
parameters of both grid searches were chosen as those which yielded the highest mean
PSNR value of the validation set. Due to the relatively small number of images, the final
network was trained on the entire dataset, i.e., both the training and validation images
(total of 1192), to exploit all available data for the learning process. Following this final
training, we tested our network performance on the test dataset. Final learning curves of

this network represented by the loss and PSNR values can be seen in Figure 9.

Table 2. Network optimization hyper-parameters

Parameter Tested Chosen

He normal distribution [4],
Glorot uniform distribution [5],

Kernel initializer Normal distribution, He normal distribution
Uniform distribution,
Zeros
R . ReLu,
Activation Function Leaky Relu ReLu
. Adam, . .
Optimizer Adam with decay learning Adam with decay learning
Epoch number 50, 75, 100 100
Batch size 4,8 8
Drop-out coefficient 0.0, 0.05, 0.1, 0.15, 0.2 0
L, penalizer weight A 0.1, 0.25, 0.5, 0.75, 1.0 0.1
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Figure 9. Final learning curves of the network. a) Loss function. b) PSNR values of the final network training.

4.12. Network training

The model performs supervised learning!**! using the 512x512 pixel-size LR input
images and the 2048x2048 labeled SRRF images that serve as ground truth, and outputs
HR images of the same size. The training was done using 1192 images, containing both
long and short SWCNTSs, to ensure the network can resolve all SWCNT length
distribution concurrently. Adam optimizer!*®*® and decay-learning method™”! were used
for adaptive optimization of the learning rate (initially set to 0.001) during the learning
process. All kernel weights were initialized using a truncated normal distribution centered
on 0, implemented by Keras ‘He Normal’ initializer.™*>81 We trained our network for 100
epochs with a batch size of 8. The PSNR, which is maximized by the minimization of our
loss MSE function, is a common image quality measurement used to evaluate and
compare SR models;*>°1 however, it is limited by its ability to capture perceptually
relevant differences.[*6%-162 Therefore, PSNR was chosen as an evaluation metric and not
as the network cost or optimization function. Training and evaluation were run on a
standard workstation equipped with 32 GB of RAM memory, and a Nvidia GeForce RTX

2080 Ti GPU with 11 GB of memory. Full network training took 18 minutes.
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5. Results and Discussion

5.1. SWCNT suspension characterization and imaging

SDBS-SWCNT suspensions were characterized by a UV-Vis-nIR absorption
spectroscopy, where sharp absorption peaks indicated a successful suspension (Figure
10a). The nIR fluorescence emission spectra of SDBS-SWCNT were measured under a
variety of excitation wavelengths showing distinguishable peaks corresponding to the

different SWCNT chiralities in the suspension (Figure 10b).1%!

(a) SDBS-SWCNT (b) SDBS-SWCNT
0.4 — . y r . y . y : 800
750
—_ 700
- —_
s £
= 650
S S
= =
o
5 < 600
(X
o b3
g i}
550
500
0.2 450
500 600 700 800 900 1000 1100 1200 1300 900 1000 1100 1200 1300 1400
Wavelength [nm] Emission [nm]

Figure 10. SDBS-SWCNT characterization. a) Absorption spectrum of SDBS-SWCNT. Presented results are of an SDBS-
SWCNT suspension following 30 s sonication time, as suspension concentrations obtained from shorter sonication
times were below the spectrophotometer threshold sensitivity. b) Excitation-emission map of SDBS-SWCNTs. Result
shown are of a 10 s sonication suspension as a representative solution for the various sonication times.

To produce high SNR fluorescence images SDBS-SWCNT were immobilized on PLL-
coated coverslips and imaged in TIRF mode in the nIR wavelength range (Figure 1b).
Different incubation times of the negatively charged SDBS-SWCNT on the positively
charged PLL-coated coverslips were used to vary the density of the immobilized
SWCNTSs. The coverslips were then mounted on an inverted nIR fluorescence microscope

for TIRF imaging. The obtained 512x640 pixel images were first cropped to cubic images

of 512x512 pixels and then processed by the SRRF algorithm, followed by manual
27
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adjustments of background removal and contrast enhancement. Finally, the SRRF
algorithm produced 2048x2048 super-resolution images, used as the GT for training our
CNN (Figure 5a). Subsequently, and after separation by SWCNTSs densities (high and
low), all images were rotated and flipped horizontally as part of an augmentation process

(Figure 6) to expand our resulted data set.

5.2. Network validation and testing

We used a CNN architecture, based on U-NET®, to produce HR images of SWCNTSs.
U-NET, a CNN named after its symmetric U-shaped architecture of an encoder blocks
follow by decoder blocks, was original introduced as a segmentation network. Contrary
to the original U-NET, our network has an asymmetric architecture, with two ancillary
decoding blocks that were added to the decoder, in addition to the 4 decoding blocks that
are coupled to 4 corresponding encoding blocks by skip connections to provide larger
output images (2048x2048) from the input frames (512x512).

Following the network supervised training using the SRRF 2048x2048 HR images as our
desired GT, we validated our network on 100 images, which were chosen randomly with
the same density distribution as the initial data set. The resolution improvement for the
test set was quantified using the FWHM criterion, calculated from a standard Gaussian
fit to a cross-section of 10 random SWCNTSs in one representative image for each image
category (e.g., low and high density), for all three images types (i.e., input image, SRRF
image, and the network predicted image). In order to compare the resolution, we
calculated the FWHM of the input image, the SRRF GT, and the HR predicted output
(Table 3). The quality of predicted images was evaluated from the SNR values, which

were calculated based on 5 images for each image category. Both FWHM and SNR values
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are shown in Table 3, including the improvement factor compared to the original LR
images.

Table 3. Resolution and image quality parameters

i SRRF
Image lEvaluatlon LR SRRF HR Network )
arameter Improvement [%] Improvement [%]
FWHM [pm] 0.95+0.11 0.66+0.09 0.74+0.02 29.6£13.1 21.1+47.6
Low Density
SNR [dB] 28.4+1.3 34.7+0.8 42.1+0.8 22.4+5.8 48.7+7.5
FWHM [pm] 0.95+0.06 0.66+0.03 0.73+£0.02 30.7+6.7 22.745.4
High Density
SNR [dB] 28.4+1.1 35.6+0.9 40.1+1.7 25.748.1 47.4+5.8
Short FWHM [pm] 1.1+0.2 0.8+0.1 0.78+0.06 28.5+22.7 27.4+16.6
SWCNTs SNR [dB] 29.3+0.4 33.9+0.7 42.4+0.5 15.7+4.1 44.8+2.5
Long FWHM [pm] 0.95+0.07 0.75+0.1 0.77+0.04 20.5+15.4 18.5+7.0
SWCNTs SNR [dB] 28.3+1.1 34.9+1.8 41.8+1.5 23.345.4 47.9+6.1

We first tested our network performance on images with varying SWCNT densities
(Figure 11a, b). The averaged FWHM values of the fluorescent SWCNTSs in the low
density LR images were 0.95 4+ 0.11 um while the HR FWHM values were 0.74 +
0.02 um. Although the overall background brightness of the dense images is higher
compared to the sparse, low-density images, the network could resolve individual
SWCNT in higher densities as well, resulting in an improvement of the averaged FWHM
values which were 0.95 + 0.06 um and 0.73 + 0.02 um for LR and HR images in the
high-density images, respectively.

Moreover, we tested our network performance on images with both short and long (up to
10 um) SWCNTs (Figure 11c, d). FWHM values of the LR images were 1.1 + 0.25 pm
and 0.95 + 0.07 um, for short and long SWCNTs images respectively, whereas the
predicted HR images FWHM values were 0.78 + 0.06 um and 0.77 + 0.04 pm

respectively. Although long SWCNTSs can be twisted and curled, our network managed
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to successfully predict HR SWCNTSs images for both long and short SWCNTSs and is not
limited to resolving only spherical or cylindrical shapes.

Overall, we showed 21 + 7%, 22 + 5%, 27 + 16% and 18 + 7% improvements in the
FWHM values of the SWCNTSs in the predicted HR images, compared to the LR images,
for the low-density, high-density, short, and long SWCNT images, respectively, which
are all statistically significant results (Figure 11e). Similar improvement values were
obtained for the SRRF images compared to the LR images, showing no statistically
significant difference between the SRRF and predicted-HR images (Figure 11f).

With an overall average FWHM improvement of 22 + 9% compared to the input image,
and an increase in the SNR values of all HR images compare to the LR images (Table 3),
we successfully showed improvement in both the resolution and quality of the images

across a range of different SWCNTSs lengths and densities.
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Figure 11. Network results compared to the SRRF algorithm. Red lines represent the cross section used for calculating
the FWHM of individual SWCNTs. Each row represents different image properties. From left to right: original TIRF
image input, SRRF output, network output, and FWHM analysis based on the intensity cross-section of SWCNTs
marked in red lines fitted by a gaussian. Scale bar stands for 10 um a) Low density SWCNTs image. b) High density
SWCNTs image. c) Short SWCNTs image. d) Long SWCNTs image. €) Mean FWHM calculated for 10 individual SWCNTs
from each image type. * Represents a statistically significant difference compared to the input LR images (*P < 0.01).

f) Improvement factor of the FWHM value compared to the LR TIRF input images.
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To further challenge the reconstruction performance of our network, we tested complex
imaging conditions such as low SNR, high-intensity-background images, as well as
images with SWCNTSs in close proximity with spatially overlapping fluorescence. In the
case of poor SNR and noisy, bright background, our network showed a FWHM value
improvement of 33 + 12% (Figure 12a) and an SNR improvement of 47 + 5%,
demonstrating that our network can remove backgrounds, thus improving the contrast and
sharpness of the predicted image. Further, we successfully demonstrated the separation
of two neighboring SWCNTSs (Figure 12b), where the normalized ratio of the maximum
intensity peak and the minimum intensity value between the peaks improved from 0.6 to
1. Upon closer inspection of the FWHM analysis plots (Figure 11a-d, Figure 12a, b), the
gaussian fit of the intensity cross-section in the SRRF outputs and the network predicted
images nearly overlap, further exemplifying the successful learning process of our
network given the SRRF GT. Nevertheless, there are some cases in which the two
gaussians differ, such as in Figure 12b, where a local maximum appears between the two
main peaks only in the SRRF output. This difference is attributed to ‘edge’ artifacts in the
SRRF algorithm('%! that may cause two separate SWCNTSs to appear connected when in

fact they are merely adjacent, and will be further discussed in the following section.
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Figure 12. Network performance for complex imaging conditions. Scale bar stands for 10 um a) Bright background
with low SNR TIRF image, its corresponding SRRF GT, network predicted image and a comparable FWHM analysis for
all three images. b) TIRF image of SWCNTSs in close proximity with overlapping fluorescence, its corresponding SRRF
GT, the network predicted image and a comparable FWHM analysis for all three images. c) Mean FWHM calculated
for 10 corresponding individual SWCNTs in all three images. * Represents a statistically significant difference
compared to the input LR images (*P < 0.01). d) Improvement factor of the FWHM value for every image compared

to the LR TIRF input images.

The peak signal to noise ratio (PSNR) value is commonly used as a quantitative measure
of image reconstruction quality in deep-learning-based SR models, where a higher PSNR
generally indicates a reconstruction of higher quality. We have calculated the PSNR

values of all image categories by averaging over 5 output images per category, compared

to the GT images of the SRRF algorithm (Table 4).
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Table 4. PSNR values of predicted images compared to the GT SRRF images

Image ) High Short Long Low SNR (high Closely-located
Low Density .
category Density SWCNTs SWCNTs background) SWCNTS
PSNR [dB] 36.6+1.3 30.5+£0.7 30411 31.5+£3.6 30.9+0.1 26.1+2.8

5.3. Super-resolution of videos

In a previous study™ we demonstrated improved resolution of videos using the SRRF
algorithm, and showed that it could capture the bending dynamicst*? of diffusing
SWCNTs and their mean-square displacement. However, since SRRF uses temporal
correlation within the radiality stack to create the final SRRF image, #1171 the temporal
resolution was decreased since 10 consecutive frames were used by the SRRF algorithm
to produce a single super-resolved frame in the video output. Figure 13a shows snapshots
taken from a video of SWCNTSs, and their corresponding HR output images of our
network. Due to our network ability to resolve single frames without the need for temporal
information nor preprocessing, our approach provides high resolution videos, frame-by-

frame, in real-time, with the same temporal resolution as the input video.
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Figure 13. Super-resolved video frames. Scale bar stands for 2 um a) Representative comparison of both SRRF and
CNN methods shows the difference in temporal resolution and the number of extracted frames. b) Snapshot from the
original video, its corresponding SRRF resolved image, the network predicted image, and a comparable FWHM
analysis for all three images, based on the solid red line. c) Pixels intensity analysis for ‘edge’ artifacts, corresponding
to the green lines. d) Comparable pixels-intensity analysis for the background artifacts, corresponding to the blue

lines.

The FWHM value of the input LR frame (Figure 13b) is 1.16 um, and while the FWHM
values of the SRRF and the HR predicted images are 0.71 um and 0.78 pm, respectively.
Two substantial issues are worth mentioning regarding ‘edge’ and background artifacts.

First, Figure 13c shows the intensity along the green lines in the SRRF and predicted
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images in Figure 13b, demonstrating the ‘edge’ artifact in the SRRF algorithm. The edge
of the SWCNTs seems to be split at its end in the SRRF image, whereas the predicted
image shows a more uniform, single edge. This effect has crucial implications, especially
when there are two nearby adjacent SWCNTs that may be interpreted as connected,
therefore distorting the information in the resolved image.

Second, the SRRF output image tends to suffer from more background noise. Figure 13d
shows the intensity along the blue lines in the background region of the SRRF and
predicted images in Figure 13b. These background regions were contrast-enhanced for
ease of visualization in the enlarged areas in Figure 13b, but the intensity profiles in
Figure 13d were extracted from the actual pixel values of both images. Comparing the
SRRF and the predicted images, the latter benefits from significantly lower intensity
values of the background pixels, which are hardly noticeable by the naked eye. Hence,
our network can improve the spatial resolution and preserve the temporal resolution

without the emergence of edges or background artifacts, thereby providing higher SNR.

54. Network validation on non-nIR images

So far, all validated images were taken with an InGaAs-based nIR camera to capture the
diverse set of SWCNTSs chiralities in our samples. Since SWCNTSs emission wavelengths
are in the nIR range, using an InGaAs camera provides optimal detection of the SWCNTSs
fluorescence. In order to demonstrate that no specialized optical equipment is needed for
using our method, we further tested our network performance with fluorescence images
taken with a silicon-based EMCCD visible camera, which is more commonly used in
optic labs for fluorescence emitters in the visible range. The visible images were taken
with the same setup, by switching the 900 nm long-pass dichroic mirror that directs

fluorescence emission <900 nm to the visible camera (and fluorescence emission >900
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nm to the nIR camera), with an 1100 nm long-pass dichroic mirror that directs
fluorescence emission <1100 nm to the visible camera. While the nIR camera has a
quantum efficiency (QE) of >65% at 900 nm and >85% between 1000-1500 nm, and can
therefore detect a wide range of SWCNT chiralities, the EMCCD camera has a QE of
40% at 900 nm which drops down to 0% at 1100 nm. Still, SWCNTSs chiralities that
fluoresce in the range of 900-1100 nm could be detected by the visible camera. Figure
14a shows images of the same sample taken by both cameras, clearly showing a few
SWCNTSs appearing in both images. We then tested the network performance on the
visible-range images compared to the corresponding nIR range images (Figure 14b). Ina
similar manner to the results in Figure 11 and Figure 12, the resolution improvement was
quantified using the FWHM values, extracted from a standard gaussian fit to a cross-
section of 3 randomly selected SWCNTSs from 5 different images with the visible camera
and their equivalent SWCNTs taken with the nIR camera. The averaged FWHM values
of the fluorescent SWCNTSs prior to the network implementation, presented in Figure 14c,
were 0.75+0.03 um and 0.7440.03 um for the visible and nIR cameras, respectively. The
corresponding FWHM values of the SWCNT in the HR network output images were
0.55+0.02 um and 0.55+0.01 pm, showing FWHM improvement of 26+4.1% and
26+2.9% for the visible and nIR cameras, respectively, similar to the previous results.
These results demonstrate the applicability of our network to fluorescence images of

SWCNTSs taken with a visible camera, without specialized optical components.
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Figure 14. Network implementation on EMCCD camera images. Scale bars stand for 10 um. a) Comparison between
the fluorescence images in the visible range camera, the nIR camera, and an overlay image of both (visible in green,
nIR in red). b) Image of the same sample taken with both cameras, and their corresponding network predicted output.
c) Mean FWHM calculated for 15 individual SWCNTs. *Represents a statistically significant difference compared to

the input LR images (*P < 0.01).
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6. Conclusion and summary

Super-resolution (SR) techniques enhance our understanding of precise structural features
and dynamic behaviors at the nano-scale. Applied to near-infrared fluorescence imaging,
SR approaches further benefit from reduced absorption, scattering, and autofluorescence
in the biological transparency window.[?87274 SWCNTSs in particular are advantageous
nIR fluorescent probes owing to their photostable, non-photobleaching, non-blinking
fluorescence in the range of 900 — 1400 nm.[3%42431 Moreover, their physical and chemical
properties, along with the ease of surface functionalization, render them favorable optical
sensors for biomedical applications.[*2031

In this work, I have shown the advantages of deep learning via a novel, U-NET based
CNN architecture holding asymmetric properties, for SR of fluorescence imaging in the
nIR by demonstrating the improved resolution and SNR of SWCNT images, without the
need for specialized imaging equipment or parameters tuning. | validated the use of the
network on challenging imaging conditions such as low SNR images and adjacent
SWCNTSs with overlapping fluorescence, as well as diverse scenarios such as different
SWCNT densities and lengths, that were achieved by creating and refining new
suspension protocols, involving varying ultra-short sonication times and a two-stage
centrifuging protocol to offer uncommonly long SWCNT. | have demonstrated an
average spatial-resolution improvement of 22.4% compared to the original images and an
image-quality improvement, reflected by the SNR values, over both the original and
SRRF images in all cases. It is worthy of note that previous research done in our lab!*%]
on SRRF implementation for nIR fluorescence images of SWCNT showed an average
improvement of 78.26% of the FWHM values, yet in the current work, 1 have optimized

our imaging setup so the initial FWHM values of the SWCNTSs in the LR images were
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much smaller. Such optimization was obtained by the innovative combination of two
protocols — through the immobilization of SWCNT on a PLL coated cover slip relying on
opposite electrical charges, the TIRF imaging protocol yielded better results than were in
our lab up to this point as only the immobilized SWCNTSs were excited in the interference
layer, while the rest of the unattached SWCNTs in the sampled were excited by the
exponentially attenuated evanescence field, hence resulting less background noise and
better SNR. Furthermore, the SNR improvement was found higher in the network
predicted images by an average of 47% compared to 24% for the SRRF outputs. This
difference can be attributed to background noises and ‘edge’ artifacts (Figure 13c, d) that
appear mostly at the SWCNTSs ends when using SRRF method which are absent in the
network predicted images, and | have also demonstrated an improvement in the temporal-
resolution for SR of videos compared to SRRF. Although the spatial-resolution of the
networks’ super-resolved images is still limited by the resolution of the SRRF GT, my
method shows significant advantages being parameter-free, requires no multi-frame
temporal information, produces no visible artifacts in the output images and having a
faster running of 0.75£0.002 s on average (with optional automatic pre-processing of
4.5+0.09 s for background removal), compared to 38+2 s in the case of SRRF.

With the purpose of highlighting this model advantages over other super-resolution
microscopy techniques and to prove that no specialized optical components are required,
I have demonstrated the applicability of my network on images of SWCNTSs taken with a
common silicon-based EMCCD camera in contrast to the InGaAs-based nIR camera,
showing promising results of our network on visible range images that share the same
standards as the results of the nIR images.

Nonetheless, the network performances were affected by the relatively small size of the

training dataset dictated by the complexity of experimentally obtaining the images. Some
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of the plausible courses of action can be either utilization of suitable manipulations
considering the size of the dataset, such as k-fold cross validation techniques. Cross-
validation is a resampling method that uses different portions of the data to test and train
a model on different iterations. As this technique averages-out measures of fitness in
prediction model, one can derive a more accurate estimate of model prediction
performance, especially under small dataset that offers little certainty regarding the
networks results. Another approach may come simply through the enlargement of the
experimental data, but since that option was neglected due to time constraints one can
also generate high-quality synthetic data. Nevertheless, producing synthesized SWCNTSs
data compared to other simulated dot emitters, encompasses additional aspects, including
the shape, bending, and chirality dynamics as well as non-uniform emission properties of
the imaged material, alongside the synthesis of background conditions similar to real
imaging conditions. Owing to the difficulties mentioned in generating such high-
complexity data, this subject is a future field of research in the Bisker lab. Such simulated
data will not only increase the amount of training data, but will also enable a quantitative
assessment of the precision in the predicted location of the SWCNT in the network output
image. Taking advantage of transfer learning can also be employed in use-cases where
only small amounts of data are available. By reusing pre-trained model weights, and fine-
tuning it for a new problem in hand, namely super resolution, one can benefit from saving
training time, and to not relay on a big data set, such as in our case.

Despite the relatively small database, | believe this current model will already prove
useful in assorted applications. For example, an upcoming study that develops a
microchip consist of an array of immobilized functionalized SWCNTs, will allow the re-
binding of given SWCNTSs to different analytes that will be pumped into and washed off

the microchip. While the development will allow the reuse of functionalized SWCNTs
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and measurements regarding the fluorescence modulation the probes will exhibit upon
interaction with different analytes, the usage of my model will enable further investigation
of the individual SWCNT behavior once interacted with the said material. Even further,
future research that will be conducted in various biological environments such as within
cells or even small multicellular organise such as caenorhabditis elegans will now have
the ability to better track a single particle through space without compromising temporal
information, and thus to offer a more accurate image of a singular SWCNT diffusing
dynamics. In contrast to the aforementioned future uses, which relay on the development
of new research methods, an almost immediate use for my network is the reconstruction
of super-resolution studies using SWCNTSs as imaging probes (mentioned in the chapter
2.1.2), benefiting from shorter calculation times and better temporal resolution, which
will enable an easier reproduction of such studies and thereby accelerate the study of
biological environments topographies.

In summary, being fast, parameter-free, and robust for various imaging conditions, my
CNN-based approach for resolving nIR fluorescence images of SWCNTs is highly
attractive as a super-resolution method. Given its simplicity and robustness, combined
with nIR fluorescent SWCNTSs, this model paves the way to sub-diffraction super-
resolved imaging in the nIR in real-time, opening a window to nanoscale structures in

biological environment.
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Appendices

Table Al. Fine grid search results

combination Epoch number Batch size Drop-out Ly penalizer PSNR train set PSNR
coefficient weight A value validation set
value
52 100 8 0 0.25 38.568 37.762
1 50 8 0 0.1 38.048 37.948
27 75 8 0 0.25 38.269 37.770
28 75 8 0 0.5 38.250 37.729
53 100 8 0 0.5 38.375 37.724
29 75 8 0 0.75 37.925 37.565
26 75 8 0 0.1 37.103 37.070
31 75 8 0.05 0.1 36.967 36.960
30 75 8 0 1 37.686 37.224
7 50 8 0.05 0.25 36.961 37.313
6 50 8 0.05 0.1 36.908 37.272
3 50 8 0 0.5 37.399 37.374
32 75 8 0.05 0.25 36.810 36.876
5 50 8 0 1 37.493 37.624
56 100 8 0.05 0.1 36.708 36.685
55 100 8 0 1 37.504 37.135
8 50 8 0.05 0.5 36.725 37.121
4 50 8 0 0.75 37.079 37.191
9 50 8 0.05 0.75 36.675 37.041
57 100 8 0.05 0.25 36.595 36.508
11 50 8 0.1 0.1 36.269 36.669
33 75 8 0.05 0.5 36.665 36.202
34 75 8 0.05 0.75 36.360 36.097
58 100 8 0.05 0.5 36.282 36.165
35 75 8 0.05 1 36.149 35.999
36 75 8 0.1 0.1 35.717 35.523
14 50 8 0.1 0.75 35.894 36.281
59 100 8 0.05 0.75 35.861 35.653
17 50 8 0.15 0.25 35.350 35.882
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