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Abstract  
 

Nanosensors have a central role in recent approaches for 

molecular recognition in various applications like imaging, drug 

delivery systems, and phototherapy. Fluorescent nanoparticles 

are particularly attractive for such tasks owing to their emission 

signal that can serve as an optical reporter for the location or the 

environmental properties. Single-walled carbon nanotubes 

(SWCNTs) fluoresce in the near infra-red part of the spectrum, 

where biological samples are relatively transparent, and they do 

not photobleach or blink. These unique optical properties and 

their biocompatibility make SWCNTs attractive for a variety of 

biomedical applications. Here we review recent advancements in 

protein recognition using SWCNTs functionalized with either 

natural recognition moieties or synthetic heteropolymers. We 

emphasize the benefits of the versatile applicability of the 

SWCNTs sensors in different systems ranging from single-

molecule level to in vivo sensing in whole animal models. 

Finally, we discuss the challenges, opportunities, and future 

perspectives. 
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Introduction  
 

Molecular recognition of DNA, proteins, or viruses, is of 

extreme importance across many fields of research, especially 

for the study of the underlying mechanism of biological 

processes, healthcare, agriculture, food security, and 

environmental sciences [1–3]. Nanosensors play a key role in 

current sensing technologies, enabling a deeper understanding of 

previously unstudied biological phenomena [4–7]. Recent 
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developments of novel nanosensors offer promising approaches 

for improved clinical diagnostics and treatments, with increasing 

interest in nanomaterials-based biosensors [8–18]. A sensor must 

have two functionalities, namely, target recognition and signal-

transduction, which translates the recognition into a measurable 

signal. For recognition, a sensor can utilize antibodies, aptamers, 

DNA-sequences, molecular imprints, lectins, or synthetic 

moieties [19–24]. Signal-transduction, on the other hand, is 

usually achieved by labeling with fluorescent dyes or gold 

nanoparticles for immunohistochemistry and other approaches, 

providing an optical indication of target binding [25–30]. The 

combination of the recognition with the signal transduction 

contributes to the sensitivity and selectivity of the sensor in 

biological environments [31–33]. Various nanoparticles have 

shown potential to be highly sensitive and selective like metal 

nanoparticles, quantum dots, nanowires, graphene, graphene 

quantum dots, and carbon nanotubes [8,9,11,12,31,34], such that 

they can bind and detect biologically-relevant concentrations of 

the target analyte. Among the numerous nanosensor platforms, 

the use of carbon nanotubes as sensors for biotechnological and 

biomedical applications is of particular interest due to their 

electrical and thermal properties, mechanical durability, and the 

ability for further functionalization, doping, and chemical 

modification [35]. Carbon nanotubes can be divided into two 

main categories according to the number of cylindrical graphene 

layers, namely single-walled carbon nanotubes (SWCNTs) and 

multi-walled carbon nanotubes (MWCNTs). While SWCNTs 

consist of a single one-atom-thick graphene sheets rolled to form 

a cylinder with a diameter between 0.7 and 3 nm, MWCNTs 

consist of several concentric SWCNTs layers whose diameter 

can range from approximately 1.5 nm for double-walled carbon 

nanotubes [36] up to 220 nm for tens of layers [35].  

 

In this review, we focus on SWCNTs nanobiosensors owing to 

their unique physical, chemical, and optical properties [37–40]. 

We briefly survey SWCNTs properties and the variety of their 

biomedical applications, and then introduce different methods 

for recognizing proteins by using their natural substrate, like a 

protein receptor, a protein-binding partner, an antibody, or an 

aptamer, or by using a non-biological synthetic substrate bound 



Prime Archives in Sensors: 2
nd

 Edition 

4                                                                                www.videleaf.com 

to the SWCNT surface. We focus on the approach of utilizing 

synthetic recognition sites on the nanotubes to detect different 

proteins. These proteins do not have any affinity to the synthetic 

substrate, but rather to its pinned configuration when wrapped 

around the SWCNT scaffold. Finally, we compare and contrast 

SWCNTs sensors and other sensing platforms, proving a 

perspective on future direction.  

 

Single-Walled Carbon Nanotubes  
SWCNTs Properties  
 

SWCNTs are one-atom-thick graphene sheets rolled to form a 

cylinder with a specific chirality and dimension [6] that 

determine their physical, chemical, electronic and optical 

properties [6,10,31,41,42] (Figure 1a-b). The roll up vector, 

which connects two lattice points on the sp2 hybridized graphene 

sheet, ends up as the circumference of the SWCNT and defines 

the orientation of the honeycomb lattice of the nanotube. Larger 

diameter nanotubes have high persistence length [43], and 

smaller level spacings in their electronic density of states [44] 

which in turn affects the optical transitions [45]. The nanotubes 

lattice structure further determines the chemical interaction of 

the SWCNTs with adsorbed surfactants or polymers, thereby 

enabling chirality-based separation and sorting [46–48]. 

 

Having a diameter of the order of 1 nm, and length in the range 

of 100 nm up to several micrometers, SWCNTs are one-

dimensional, high-aspect-ratio nanocarbon materials, with high 

surface area that can be readily functionalized. Without surface 

functionalization, SWCNTs are hydrophobic and tend to bundle 

due to strong Van der Waals attraction forces [49]. In order to 

form a colloidal suspension of individually dispersed SWCNTs, 

they are usually non-covalently functionalized with amphiphilic 

molecules or polymers by sonication [10,49–53]. Proper surface 

functionalization can render them biocompatible and thus 

suitable for numerous biomedical application, including sensing, 

drug delivery, nanoinjection, phototherapy, imaging, or artificial 

actuation [14,31,52,54–75]. 
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The high surface to volume ratio can facilitate relatively large 

cargo load on SWCNTs for efficient delivery applications. For 

example, SWCNTs can function as universal drug delivery 

system (DDS) for small interfering RNA (siRNA) and other 

oligonucleotides, having circulation times ranging from minutes 

to hours. The delivery of siRNA have been observed to include 

pharmacokinetics, toxicity, antitumor activity, and target protein 

knockdown in several cell lines [76]. Besides, SWCNTs can 

penetrate cells and release siRNA into the cytoplasm [50], which 

is of great importance for gene silencing applications. Moreover, 

recent studies have reported the utilization of carbon nanotubes 

for unassisted delivery of plasmid DNA and siRNA into a 

variety of model and non-model plant species [77–80]. 

 

Semiconducting SWCNTs have unique optical properties, 

including bright fluorescence emission in the near-infrared (nIR) 

spectral range mainly between 900 nm to 1600 nm, as well as a 

broad absorption spectrum compared to organic molecules [81]. 

In addition, they do not photobleach or blink [16] (Figure 1c). 

The photostable nIR fluorescence, along with their robust 

functionalization allow for prolonged detection of SWCNTs 

through biological samples like tissues, blood, and cells as they 

are transparent in this spectral range [16,31,42,52,63,67,82–89] 

(Figure 1d). Human blood, for instance, has a narrow optical 

transparency window from 900 to 1400 nm where light can 

penetrate for approximately 3-5 cm deep [90]. Only a few 

conventional markers absorb or emit strongly in this region, 

however, some suffer from low photochemical stability or poor 

biocompatibility [52,91] (Figure 1c). In addition to the optical 

properties, the physical dimensions of SWCNTs in the order of 

nanometers to a few microns matches the typical size of 

biological molecules, enabling precise targeting and 

visualization [31]. Thus, SWCNTs are attractive candidates for 

biomedical imaging, detection, and sensing applications.  
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Figure 1: SWCNTs properties. (a) A graphene sheet segment with indexed 

lattice points. A nanotube with a chiral indexes (n,m) is obtained by rolling the 

sheet along a roll-up vector originating at (0,0) up to (n,m). The chiral angle α 

(from 0 to 30°) is measured between the roll-up vector and the horizontal 

zigzag axis; the tube circumference is the length of the roll-up vector. 

Nanotubes with chiral indexes for which mod (n,m) = 0 are metallic, whereas 

the rest are semi-conducting. (b) The density of electronic states for a single 

semi-conducting single-walled carbon nanotube structure. Solid arrows depict 

the excitation and emission transitions of interest; dashed arrows denote 

nonradiative relaxation of the electrons (in the conduction band) and holes (in 

the valence band). (c) Most fluorophores, such as indocyanine green (ICG), 

undergo rapid photobleaching upon continuous illumination (blue). SWCNT 

emission (red) remains photostable even under high fluence irradiation 

(1.3×107 W m−2). (d) SWCNTs fluoresce (blue) primarily in the near‐infrared 

regime (900–1600 nm), where Blood (red) and water (black) absorbance is 

minimal. The gap in tissue absorbance, which occurs in the near‐infrared 

regime, ensures minimal tissue interference with SWCNT fluorescence 

emission. The figure includes tissue data adapted from Wray and co‐ workers 

[90]. Reprinted with permission from Boghossian et al. [16] used with 

permission from Wiley publication (e) Excitation–emission profile of polymer-

functionalized SWCNT suspension. Reprinted with permission from Bisker et 

al. [92], used with permission from Nature Communications. 

 

SWCNTs as Optical Sensors  
 

The fluorescence signal of SWCNTs is sensitive to the 

environment and can be affected from global changes in pH and 

ionic strength [93] or local changes in the surface 

functionalization or even single-molecule adsorption [94]. The 

surface functionalization forms a corona phase surrounding the 

nanotube scaffold, which mediates the interaction of the 
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SWCNT with molecular analytes in its proximity, and thus 

determines the fluoresce modulation upon surface binding. The 

SWCNT fluorescence originates from radiative recombination of 

excitons, which have strong binding energies [16]. Upon target 

binding, there are several mechanisms that can lead to the 

modulation of the emitted light, including exciton quenching due 

to competitive non-radiative decay, a shift in the Fermi level 

leading to absorption bleaching, and reorientations of the solvent 

dipole moments in the close proximity of the SWCNT due to the 

conformational changes of the corona phase, resulting in a 

solvatochromic shift [95,96].  

 

Hence, SWCNTs can be used for sensing applications as 

fluorescence signal transducers, with the benefits of high 

photostability, lack of photobleaching, and physical size 

comparable to the typical size of target bio-molecules [31,50]. 

The various chiralities can enable multiplexed detection by 

monitoring the emission in different wavelength channels 

(Figure 1e) in parallel, facilitating high throughput screening [6] 

and hyperspectral imaging [97]. Further, different chiralities 

within the same SWCNTs suspension can respond differently to 

a target analyte owing to the differences in the chemical 

interactions between the wrapping polymer and the underlying 

lattice structure of the nanotube [98].  

 

Owing to their unique optical properties, SWCNTs have been 

utilized as optical sensors for human diseases including different 

types of cancer [40], glucose levels in diabetics and H2O2 in 

reactive oxygen signaling pathways [82,99–101]. SWCNTs 

functionalized with nucleic acids or peptides form stable 

complexes even in complex biological environments [47,102–

107], with increased thermal stability up to 200℃ [108]. 

Moreover, SWCNTs functionalized with DNA sequences 

containing an endonuclease recognition site have been 

successfully used to study restriction enzyme activity by 

monitoring their fluorescence emission [109]. DNA-SWCNTs 

showed increase fluorescence intensity in response to 

neurotransmitters and have successfully detected dopamine 

efflux in neuroprogenitor cell culture [110–113] and in acute 

brain slices [114,115]. (GT)6-SWCNT has successfully detected 
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dopamine and norepinephrine in a broad range of pH and salt 

concentrations, suggesting potential compatibility for in-vivo 

neurophysiology use [116,117]. A recent study demonstrated the 

recognition of the neurotransmitter serotonin using SWCNTs 

wrapped with a serotonin-aptamer. This nanosensor was 

immobilized on a glass surface, on which human blood platelets 

were cultured, and were shown to detect serotonin release 

patterns from the cells in real-time [118]. DNA wrapped 

SWCNTs were also utilized for the detection of single-stranded 

RNA genome of intact HIV particle [119] and of Doxorubicin, a 

chemotherapy drug effective against dividing cells due to its 

affinity to DNA [120]. Further, DNA-SWCNTs were engineered 

to quantify microRNA hybridization, by a solvatochromism-like 

response following DNA displacement from the nanotubes 

surface [121]. In addition, SWCNTs functionalized with boronic 

acid-modified dextran, polyethylene-glycol (PEG) brush, and 

rhodamine isothiocyanate functionalized-PEG were shown to be 

selective sensors for the small molecules riboflavin, L-thyroxine, 

and estradiol, respectively [122]. Random copolymers consisting 

of acrylic acid, styrene, and acrylated cortisol, were used to 

suspend SWCNT, and to demonstrate the detection of human 

steroid hormones [123]. SWCNT functionalized with a mixture 

of peptides was shown to detect odor molecules [124] and acetic 

acid in gaseous phase [125]. Furthermore, dendron-polymer 

hybrids were utilized as tailorable SWCNT coronae for the 

detection and real-time monitoring of enzymatic activity [126]. 

Recently, a sensor for the oncometabolite D-2-hydroxyglutarate 

(D2HG) was discovered, using (ATTT)7-SWCNT, showing a 

fluorescence intensity increase in response to D2HG [127].  

 

Protein Recognition with SWCNTs  
 

The recognition of large bio-macromolecules poses a different 

challenge owing to the size, complexity, and various 

conformation of the target, as in the case of proteins [128]. 

Nevertheless, SWCNTs have been successfully utilized for 

protein detection or for the study of protein-protein interaction 

by surface functionalization by either natural substrates or 

synthetic ones [129,130].  
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Natural Protein Recognition  
 

One approach for protein detection is to use the natural binding 

partner of the target protein as a recognition site bound to the 

SWCNTs. This can be achieved, for example, by using an 

antibody, an aptamer, or a DNA recognition sequence, in order 

to exploit the original protein-protein or protein-DNA 

interactions for sensing applications.  

 

A label-free detection was demonstrated in Ahn et al. [131], with 

nanotubes functionalized with chitosan polymer modified with 

nitrilotriacetic acid (NTA) chelator. The chitosan was utilized 

owing to the accessibility of functional groups available for 

additional modification. The NTA chelated Ni
2+

 and served as 

proximity quencher modulating the SWCNT fluorescence 

intensity as a function of distance (Figure 2a). The NTA-Ni
2+

 

group can bind to any hexahistidine tagged (his-tag) capture 

protein, which serves as a natural binding site for the protein of 

interest. For example, a his-tagged protein A bound to the NTA-

Ni
2+

 group was used to capture human immunoglobulin G (IgG) 

[132]. A subsequent binding of the target protein leads to a 

modulation of the fluorescence intensity, enabling studying 

protein-protein interactions, protein glycoprofiles, and protein 

quantification [31,131–133]. 

 

 
 
Figure 2: Detecting protein-protein interaction using SWCNTs. (a) Schematic 

of label-free protein sensor array with fluorescent single-walled carbon 

nanotubes. SWCNT suspension was spotted on a glass and functionalized with 

NTA-Ni2+ to bind his-tagged capture proteins and detect the interaction 

between the capture protein and a target protein. The his-tagged capture 

proteins were first immobilized by the NTA-Ni2+ groups through their his-tag 

residue. Subsequently, upon the addition of a target protein to each spot and its 

binding to the corresponding capture protein, the distance between the Ni2+ 

quencher and the SWCNT surface changed, resulting in a fluorescence 
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modulation. Reprinted with permission from Ahn et al. [131], Copyright 2011 

American Chemical Society. (b) Illustration of the Anti-uPA-DNA-SWCNT 

complexes. Reprinted with permission from Williams et al. [134]. Copyright 

2018 American Chemical Society. 

 

Satishkumar et al. [135] used fluorescent SWCNT sensors for 

the detection of avidin by conjugating redox-active dyes bound 

to a recognition element, biotin, to the SWCNT surface. The 

biotinylated dyes were quenched while absorbed onto the 

SWCNT, such that avidin binding resulted in their desorption 

from the nanotubes and the recovery of the fluorescence. The 

mechanism of the fluorescence quenching relies on oxidative 

charge-transfer reactions with small redox-active organic dye 

molecules [31]. This concept, of dye-ligand complex conjugated 

to SWCNT, can be highly versatile for a wide range of 

bioanalytes, through the choice of the specific receptor group 

attached to the quenched dye [135]. 

 

Additional studies showed the detection of the prostate cancer 

biomarker, urokinase plasminogen activator (uPA), using DNA-

SWCNTs conjugated to an anti-uPA antibody (Figure 2b) [134], 

the detection of single RAP1 proteins secreted from individual E. 

coli cells using SWCNTs functionalized with the RAP1 aptamer 

[136], and the detection of the SARS-CoV-2 spike protein using 

SWCNTs functionalized by the ACE2 receptor [137]. Further, 

Lee et. al. demonstrated the optical detection of insulin and 

platelet-derived growth factor with the corresponding aptamers 

through two distinct mechanisms, namely, direct protein binding 

to the aptamer-SWCNT complex, or the detachment of the 

aptamer from the SWCNTs surface following protein binding, 

both leading to a decrease in the fluorescent intensity [138]. 

Moreover, SWCNTs functionalized with HE4 antibody showed a 

nanomolar sensitivity for HE4, a biomarker for high-grade 

ovarian carcinoma, enabling noninvasive optical detection of 

cancer biomarkers [139], and peptide-functionalized SWCNT 

was used to detect abnormal trypsin activity in urine samples, 

which is typical in pancreatitis [140]. 
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Synthetic Protein Recognition  
 

Molecular recognition can also be achieved using a synthetic 

SWCNT corona [122]. In this approach, a synthetic amphiphilic 

polymer is absorbed onto the hydrophobic surface of the 

SWCNT. The hydrophobic domains of the polymer form a stable 

polymer-nanotube complex, whereas the hydrophilic regions 

extend into the aqueous environment (Figure 3a). The 

confirmation of the amphiphilic polymer, i.e. the corona phase, 

can enable the binding of a specific analyte (Figure 3b). In order 

to discover new corona phases for molecular recognition a 

library of polymer-conjugated SWCNT was screened against a 

panel of analytes, while the nIR fluorescence emission was 

monitored for intensity changes or wavelength shifts (Figure 3c) 

[92,122,141,142]. A successful screen resulted in a corona phase 

that can specifically and electively recognize a target analyte 

[122]. In parallel, theoretical efforts have led to preliminary 

design principles of a specific configuration of a short polymer 

wrapping that would recognize the contour and functional groups 

of a small molecule or a protein of interest [143].  

 

The interaction between the target analyte and the functionalized 

SWCNTs, as well as the resulting fluorescent modulation, 

depend on many factors including the nanotube chirality, the 

composition and valency of the polymer corona, as well as the 

lipophilicity and redox potential of the target 

[61,98,110,132,144]. The molecular interaction mediated by the 

SWCNT corona is an active area of research, where 

experimental and numerical tools are rapidly being developed in 

order to shed light on the underlying mechanism of this complex 

interaction [98,143–147].  

 

The first high-throughput screening of synthetic polymer 

coronae of SWCNTs targeted small molecules library [122]. 

Subsequently, the first protein-targeted coronae phase screen has 

led to the discovery of a sensor for the protein fibrinogen [92]. In 

this study, 20 SWCNT corona phases were screened against a 

protein library consisting of 14 proteins from the whole human 

blood, either the most abundant or of clinical significance, 

including albumin, transferrin, haptoglobin, fibrinogen, α1-
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antitrypsin, α1-acidglycoprotein (hCG),  α2-macroglobin, 

Immunoglobulin (IgA), IgG, IgM, C-reactive protein (CRP), and 

insulin [92]. The screen revealed a specific sensor for fibrinogen, 

using dipalmitoyl-phosphatidylethanolamine (DPPE)-PEG 

(5kDa) corona (Figure 3d). Fibrinogen is one of the most 

abundant proteins in the plasma, with an elongated structure that 

consists of three globular domains connected by coiled-coiled 

helical chains [148,149]. Fibrinogen detection was also 

demonstrated in competitive assays in the presence of albumin, 

which is usually used as a nonspecific binding agent [150–152], 

or in serum environment. Nonselective parameters such as the 

molecular weight and hydrophobicity of the proteins, or the 

surface coverage of the polymer, showed no correlation with the 

fluorescence response, supporting the hypothesis that the 

combination of the three-dimensional structure of the target 

protein along with the conformation of the phospholipid-

PEG(5000) corona adopted when pinned around the nanotubes, 

is a key factor in the successful molecular recognition [92]. 

 

 
 

Figure 3: Corona phase molecular recognition high-throughput screening. (a) 

A heteropolymer is adsorbed onto the surface of the SWCNT to form a corona 

phase around the nanotube. (b) The corona facilitates the recognition of a 

specific analyte, (c) resulting in a fluorescence emission modulation signature 

for sensing applications. From Landry et al. [146], used with permission from 

(a) 

(d) 

(b) (c) (e) 

SWCNT

(f) 

(g) 
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Sensors. (d) Heat map of the normalized response of the SWCNTs fluorescence 

intensity to the various proteins. From Bisker et al. [92], used with permission 

from Nature Communications. (e) Binding isotherm for the titration of C16-

PEG(2000 Da)-ceramide into insulin solution (blue circles) or PBS (red 

squares) plotted against the molar ratio of C16-PEG(2000 Da)-ceramide to 

insulin. The overlapping curves of the injections into insulin or PBS indicate 

that the released heat in both cases is similar, indicating the lack of affinity 

between insulin and C16-PEG(2000 Da)-ceramide without the presence of the 

nanotube interface. Reprinted with permission from Bisker et al. [141]. 

Copyright 2018American Chemical Society. (f) A proposed albumin 

recognition model by the carboxylate-rich, hydrophobic polymer, potentially 

due to mimicking the head group of fatty acids that bind albumin through salt 

bridges or hydrogen bonds. Reprinted from Budhathoki-Uprety et al. [153], 

used with permission from Nature Communications. (g) Peptoid-SWCNT 

complexes for protein recognition. An “anchor” region of the peptoid adsorbs 

to the SWCNT surface, whereas a flanking loop segment interacts with the 

target protein resulting in a fluorescence modulation. Reprinted from Chio et 

al. [154]. Copyright 2019 American Chemical Society. 

 

An extended corona phase screen against the same protein panel 

revealed a sensor for insulin [141]. Insulin is a small peptide 

hormone which plays a key role in blood glucose regulation 

[155]. Through the secretion of insulin, the pancreas stimulates 

glucose uptake in order to synthesize lipids, as well as inhibits 

the production of ketone bodies and the breakdown of proteins, 

glycogen, and lipids [156]. The high-throughput corona phase 

screen was done with PEGylated-lipids-SWCNTs, where the 

C16-PEG200-ceramide-SWCNT complex showed specific and 

selective quenching response to insulin. The corona phase 

showed no prior affinity towards insulin, validated using 

isothermal titration calorimetry, by comparing the heat released 

while injecting the C16-PEG200-ceramide into insulin solution or 

PBS (Figure 3e) [141]. The C16-PEG200-ceramide-SWCNT 

insulin sensor was utilized for detecting insulin secreted from 

pancreatic β-cells in real-time following a glucose stimulus 

[157]. The new synthetic nIR fluorescent nanoparticle, paves the 

way to real-time detection of insulin levels in-vivo using an 

encapsulating implant [18,31,56,63,86,158,159]. Inference of 

insulin levels in the various body compartments can be then 

achieved using a pharmacokinetic modeling of insulin, glucose, 

and glucagon metabolism [56,160].  

 

In a recent study, Budhathoki-Uprety et al. developed an 

albumin nanosensor using SWCNTs functionalized with 
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polycarbodiimides polymers incorporating phenyl rings, which 

mimic fatty acid binding to the albumin [153]. The albumin 

detection was demonstrated in minimally processed urine 

samples of microalbuminuria patients under ambient conditions, 

with similar sensitivity compared to antibody-based clinical 

assay, suggesting that this antibody-free detection can facilitate 

diagnosis in point-of-care and resource-limited settings (Figure 

3f) [153]. A different approach for protein recognition was 

demonstrated by Chio et al. using peptoids functionalized 

SWCNT [154]. Peptoids are easy to manufacture and they are 

resistant to proteases activity. Further, they were shown to 

specifically recognize enzymes and proteins [161,162]. In their 

study, Chio et al. utilized an anchor-loop peptoids corona for the 

recognition of the lectin protein wheat germ agglutinin (WGA), 

and further validated that the WGA kept its functionality of 

binding to the lectin’s target sugars (Figure 3g) [154]. Finally, a 

high-throughput screening assay has led to the discovery of 

lipid-PEG functionalized SWCNT as sensors for the 

nucleocapsid and spike proteins of SARS-CoV-2 [163]. 

 

SWCNTs Advantages  
 

Traditional recognition methods use antibodies to identify small 

and macromolecule targets. Antibody-antigen pairs have a wide 

range of application ranging from diagnostics and therapeutics to 

basic and clinical research [164,165]. Although they benefit from 

high selectivity and specificity to the antigen, a major limitation 

of antibodies in high-throughput research is the need for 

injecting the antigen into an animal as the first step of production 

[166].  

 

Protein corona phase molecular recognition using SWCNT 

offers an alternative approach for various assays in which 

degradation, stability, cost, and production scale prevent natural 

recognition elements, like antibodies, from being employed. In 

this method, the synthetic polymer used for the recognition does 

not necessarily have any prior affinity to the target protein, but 

rather its pinned configuration upon wrapping the nanotube 

surface forms a conformational binding site. A discovery of such 

nanosensors can be driven by high throughput screening with 
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rapid manufacturing processes [122]. This can generate 

synthetic, non-biological antibody analogs that can overcome 

some of the limitations of the conventional ones including long 

development times, high production costs, the need for a living 

organism for initial production, challenging reproducibility, poor 

stability due to hydrolysis in ambient temperature resulting in 

limited shelf time, and sensitivity to degradation while 

circulating in-vivo [167–169]. In contrast, SWCNTs 

demonstrated long-term stability in vivo [63] and were shown to 

protect DNA or siRNA from cellular nuclease degradation 

[50,170]. Hence, SWCNT recognition offers a stable and 

reproducible construct that can push forward discovery research 

in the field [18,92,122].  

 

SWCNTs fluorescence have several advantages over common 

organic fluorescent dyes and fluorescent quantum dots (QDs). 

The main limitation of organic fluorophores is the inevitable 

photobleaching that restrict their utilization for real-time 

microscopy experiments lasting several hours [52,171]. Further, 

organic fluorophores are quenched when jointly applied with 

hematoxylin and eosin (H&E), an important stain used for 

evaluation of histological sections [172–174].  QDs are attractive 

probes for microscopy and imaging, owing to their 

photophysical properties, including their photostability and the 

narrow bandwidth fluorescence emission with a wide excitation 

range [175]. They are mainly used as inert markers [176–181] 

and FRET-based sensors [182] for both in vitro and in vivo 

applications. QDs are highly luminescent semiconducting 

nanoparticles, and approximately 100 times more resistant to 

photobleaching than organic fluorophore. Nevertheless, they 

suffer from signal attenuation under prolonged excitation, 

fluorescence blinking, complicated surface chemistry, and 

potential heavy-metal long-term toxicity [183–186]. SWCNTs 

overcome these limitations owing to their inherent non-

photobleaching, non-blinking fluorescence, and their sp
2
 

hybridized all-carbon structure that gives rise to easy surface 

functionalization and biocompatibility [14,63,187]. Hence, 

SWCNTs are subjected to intensive research in many emerging 

applications of optical nanosensors that exploit their nIR 
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fluorescent emission and surface chemistry for target recognition 

and signal transduction [10,16,192–196,31,42,51,67,188–191]. 

 

Conclusions 
 

This review provides a summary and a perspective on the 

utilization of SWCNTs for biosensing applications. The non-

photobleaching, non-blinking fluorescent emission of SWCNTs 

plays a key role in rendering them optical sensors, enabling in 

situ, label-free, real-time detection with both spatial and 

temporal resolution [92,116,118]. Recent studies have 

demonstrated the detection of proteins using various approaches 

for surface functionalization including natural substrates 

[54,131,135] or synthetic polymers [92,141,153], with the 

potential to enable long-term continuous monitoring of important 

biomarkers or to replace costly and time consuming laboratory 

testing [197]. We have highlighted the advantages of SWCNTs 

for in-vivo and in-vitro biomedical applications such as drug 

delivery, imaging [198], and sensing, focusing on protein 

recognition. Their considerable potential to advance research and 

applications in this field has drawn increasing attention in recent 

years, opening new avenues for future discoveries [18].  

 

In summary, the unique properties of SWCNTs make them 

excellent candidates for sensing proteins and bio-

macromolecules, with optical signal transduction, where 

advancements in nanotechnology design, synthesis, 

characterization, and modeling will continue to push forward the 

discovery of new SWCNT-based fluorescent sensors. 
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